PREDICTION OF LANDSLIDES CRISES: TESTING CONCEPTS FOR FLUIDIZATION OF SLIDING MATERIAL

Th.W.J. van Asch (), J.-P. Malet @, B. Aksoy @), B. van Dam ), L.P.H. van Beek " & T.A. Bogaard () Contact:

. . Th.W.J. van Asch
(2) Faculty of Geosciences, Utrecht University, Utrecht, Netherlands. Faculty of Geosciences, Utrecht University, Netherlands

N (3) CNRS UMR 6554, University of Caen-Basse-Normandie, Caen, France. Email: t.vanasch@geo.uu.nl
P \IYfGCh Grenoble (4) Polytech Grenoble, University Joseph Fourier, Grenoble, France.

8 ] INTRODUCTION - —— —""7 ) 3 Bl Fig. 2: Flume experiment; of retrogressive - MODELLING RESULTS
g | i g SORRNRE T et #ie  slumping and liquefaction.
j‘” Predicting the occurrence of landslide crises (eg. acceleration of gradually or ‘ | em The compression model shows for the parameters given in Fig. 5, after a
T, intermittently moving landslides) is of paramount importance for a reliable assessment ) displacement of 1.6 mm during 30 seconds, and liquefaction of slices n°
; of the hazard. The main problem is to identify the possibilities of landslide acceleration 5, 6 & 7 (Fig. 3, Fig. 6). Due to the sharp curvature of the slip plane,
c and its potential transformation in a catastrophic flow. Different mechanisms has been E liguefaction will always occur after a small displacement for a range of
@ identified which explain this dangerous transition. parametric values (C, ,E, K, ) applicable for silty sand.
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The objective of this work is to present an experiment of retrogressively slumping in ) cm Slice number
sandy silt material simulated in a laboratory flume. The laboratory simulations enable us o Excess pore pressure Au can be calculated — liquefaction limit —l— pore pressure
to test yvhether liguefaction, which was observed .in the flume can be explaineq by yf r%” with the Skempton’s law (Eq. 2):
contraction of a saturated shear band or (and) by internal deformation and undrained e | _ _ _ _ _
= loading. T /'#"/r Au = (1 + A)AGX = (1 +A)8XXE (2) Figure 7 ghpws the results of thg Kinematic comp_actlon mode!. In thIS. case,
- . // f | a block sliding on the lower straight part of the slip surface with a height of
g 1 // / // where A is Skempton’s pore pressure 20 cm (Fig. 3) is assumed. Thg pore pressure reaches the liquid Iimifc after
. e coefficient and E the Young’s modulus. The a displacement of 20 cm (maximum displacement measured; see Fig. 4).
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= The slumps were triggered by creating a critical steady state groundwater table by | / obtained by calculating the degree of contlnutgs onf an infinite slope. The compaction ahr_llgle reduces to zero (no
O) means of supply of a bottom head in the artificially slope and controlled drainage at the ; // /,ij”” consolidation for uniform distribution of genzr_a on to excgs?h p(ir? |I:>ressure anymodre), WhitE e;<c_etss_ Pt(.)rle prlessure
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o © The movement of the slumps were 9 'Sp%?nizrge%?% me offhe pressure in the shear zone which may pressure) ’ - 50T o
E o studied in detail by extracting image | | dilate or compact during movement. The 2 / - :
2’; leF files from the video recorder. The generated EXCESS pore pressure gradient in . 14
~ v | T 7T 1T 1T T geometry of each image was then oD _ Vo8, 3 the shear zone is calculated with (Eq. 3). MR L2
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o — Fig. 1: A schematic picture of the laboratory flume. software. where 0p_/0z is the excess pore pressure gradient in the shear zone, vy, is the bulk unit weight of water, g is the 0.00 0.20 0.40 0.60 0.80 1.00 q
m D From the referenced images through time, 3 clearly visible "points® (A, B & C in Fig. 3) gravity acceleration, K is the hydraulic conductivity, @ is the dilatancy angle (W=38y/dx with respectively the —  cvefacton it kP seconds
: .: were tracked and their coordinates calculated to obtain displacements, and velocities displacement normal and parallel to the slip surface) and v is the displacement velocity along the slip surface. m compaction angle —+ displacement (cm)
— S (Fig. 4). Drainage of excess pore pressure is obtained by computing the degree of
© consolidation for excess pore pressure, decreasing linearly with depth for an half ® CONCLUSIONS
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- Both models predict liquefaction of the slump. The kinematic compaction
- © Van Asch et al. (2006) assume that excess pore pressure is generated by compression model always predicts liquefaction. The measured displacement rate is
O = or extension due to differences in velocity of the slices in a landslide. " MATERIAL PROPERTIES however 35 times higher than the calculated displacement. The compaction
> < The displacement T, of the slice i and the velocity v, is calculated assuming the model shows liquefaction for K, and -values given in Fig. 5. There is no
generalized Bingham Coulomb-viscous model. The initial excess shear force for each The following geomechanical values, derived from triaxial tests, were selected for liquefaction when K, increases and (or) Y decreases. Displacements rates
slice is derived from the Bishop equations. It is assumed that, during the differential a loosely packed silty sand material (Fig.5). are however much higher (Fig. 6) than the measured rates (Fig. 4).
movement of the slices with a horizontal width b, and slip angle a,, the most important e —— = =
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dominant strain component (€ ) in the horizontal direction, can be calculated with (Eq. Skempton’s pore pressure coefficient A -) 0.5
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