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Dynamics of the Caribbean and Panama Plates

Steven van Benthem and Rob Govers, Utrecht University, the Netherlands (benthem@geo.uu.nl)

The Caribbean and Panama plates (figure 1) are characterized by a stable
interior with, especially in the northeast and southwest corners, deforming plate
boundaries.WWe adress the following questions:

- What causes the deformation at the boundaries of the Caribbean?
- Which tectonic forces are responsable for the observed strain patterns?
- Can we explain the first-order observations with an elastic thin shell model ?

Our approach is to assume different types of forces acting on the
Caribbean (Table 1, figure 2) and then to assume no net torque acting on
the plate (Wortel et al, 1991). This enables us to solve for the unknown
magnitudes of the forces, and to develop a series of elastic models.
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Figure 1a) Bathymetry, focal mechanisms (CMT catalogue) and mayor tectonic elements of the
Caribbean and Panama plates.
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Figure 2)
Major tectonic forces acting on the Caribbean.
A summary of those forces is given in Table 1.

We solve the mechanical equilibrium equation, for all force combinations above,
using the finite element code G-Tecton (Govers and Meijer, 2001).

However, we choose only to examine the reference model and variations

as mentioned above, since all other solutions can be composed as linear
combinations of those deviations. The different solutions, share most

first-order features, and we show only those solutions that are most representative
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a) Rotations for the reference model.
In the east we find counterclockwise rotations,
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a) Stress distribution for the reference model.

Features are high stresses, both in the north -
and south centre of the Caribbean. in the west clockwise.
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b) Stress distribution for the indenter (factor 100) P) Rotations for the Indenter model.Especially

model. Apart from features mentioned at a), near the indenters we find high rotation_s. In
there are high stresses at the indenters. Panama there’s both CW and CCW rotation.
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c) Rotations for the backarc model. Rotations are
overal similar to a), only magnitudes are higher.
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c) Stress distribution in the case of backarc

spreading. Stresses are overall much higher.

Figure 5 (left) and 6: Solutions of the equilibrium equation. Figure 5 shows effective stress,
and stress crosses. Figure 6 shows the rotation together with the displacement field.

FORCE CONSTRAINTS

N
> b = Universiteit Utrecht

NS

Here we show a reference model (figure 2), followed by variations in three of the

force types:

1. suction force at the Southern Antilles, simulating trench roll-back
2. Fperis proportional with the relative plate movement,

simulating a subduction channel

3. A model incorporating an extra force, Frc accounting for a possible extra force

due to subduction of seamounts.
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Figure 3a)
All possible solutions for, in this case, the reference
model.The Fdr has been varied, Fcv has been taken
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Figure 3b)
Not all solutions are physically sound. For example, we do
not allow a driving (positive) resistive force. Figure 3b-d

constant, 3e12 Nm-1, giving 3 lines with solutions for shows how to remove those solutions that have a positive

the other unknown magnitudes. Then the same is
done for Fce =4e12 and 5e12 Nm-1
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Figures 4 a-l: Solutions for all models mentioned above. Almost all models have solutions
centered around Far = 0, implying that no basal drag is needed to obtain a balanced solution.

The last step Is to compare our results with actual data. As we have modelled the
Caribbean as an elastic plate, we cannot use all observations. First we follow the
method of Meijer (1995), as shown in figure 7.
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Figure 7a): Focal mechanisms, given by the CMT catalogue. Assuming, that slip occurs on a pre-existing fossil fault,
we can, using the stress field from our models, calculate the direction of maximum shearstress on the faultplane.
Next we assume, that slip occurs in the direction of maximum shearstress, thus obtaining new focal

mechanisms, for both possible fault planes, as shown in the figure (red and green). By summing the squared
differences in direction, between observed and calculated slip, we obtain a measure for the fit with the data.

This measure is shown in figure 7b for all models.
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Figure 8a) Relative strainrate directions as obtained from gps measurements, in combination with strain directions

from the World Stress Map. We triangulated the areas between the GPS - stations, and calculated the velocity gradients.
Next, this can be converted to both rotations (Figure 8b), and strainrates, which are proportional to actual strains. The
regime is denoted by a dot, ranging from compression (light), along trans-compression and trans-tension to tension(dark)

CONCLUSIONS:

1. No basal drag is needed to obtain balanced solutions, contrary to
findings by Negredo et al. (2004)

2. Consistent features of each model, are high compressive strains near
Maracaibo and Hispaniola.

3. Slab pull forces are largely compensated in the subduction zone.

4. Indenters cause local high stresses. Our preliminary assessment
indicates that models with indenters correlate better with observations.
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