Effect of methane gas phase dynamics on the coupled methane-sulfur cycles in the subsurface

José M. Mogollón^{1*}, Andy Dale¹, Ivan L'Heureux², and Pierre Regnier¹ 1 Faculty of GeoSciences, Utrecht University. Utrecht, The Netherlands 2 Department of Physics, University of Ottawa. Ottawa (ON), Canada * j.mogollon@geo.uu.nl

Ocean sediments represent the greatest CH₄ reservoir on the planet. Nevertheless, their CH₄ contribution is negligible towards the oceanatmosphere system (fig. 1). This is due to the microbial process of anaerobic oxidation of methane (AOM), which acts as an efficient subsurface CH₄ barrier and thus an important climate regulator. Our scope is to investigate the efficiency and behavior of AOM with respect to the dynamics of free methane gas $(CH_{4(q)})$.

Conceptual model

Particulate organic carbon (POC) degradation coupled to SO_4^{2-} reduction takes place in the upper parts of the sediment. Once SO_4^{2-} is consumed, methanogenesis (MET) begins and generates CH₄ (aq) in the deeper layers of the sediment. When CH₄ (aq) exceeds the in situ solubility, CH_{4(g)} forms. Buoyancy leads to upward gas flow, and dissolution takes place in the overlying undersaturated sediment layers where CH₄ (aq) is consumed by AOM (Fig. 2).

Universiteit Utrecht

Comparison to field data - Profiles

Fig. 3 shows measured (Martens et al., 1998) and simulated CH₄ (aq) and SO₄²⁻ profiles for Eckernförde Bay sediments (Kiel Bight, Germany) at steady state. Supersaturation due to high MET rates leads to CH₄(g) which is transported upwards and dissolves in undersaturated areas near the sulfate-methane transition zone (SMTZ). Gas results are compared to acoustic sounder profiles (fig. 3 left color column) collected by Wever et al., (2006).

Comparison to field data - Rates

CH₄ fluxes towards the SMTZ feed the microbial community performing AOM. In systems with high POC fluxes to the sediment-water interface (SWI), the transport and dissolution of $CH_{4(q)}$ in methane-depleted areas produces a steep CH₄ gradient which maintains high CH₄ diffusive fluxes. Thus, in systems where $CH_{4(q)}$ AOM rates are high and may even overshadow sulfate reduction rates (fig. 4).

Fig. 4 Simulated and measured (Martens et al., 1999,) geochemical rates at Eckernförde Bay

Fig. 5. Integreted AOM vs. POC fluxes

Predicting CH4 fluxes from MBD

Gas effects on AOM

Seasonal variations in CH4(q)

Fig. 6: A Temperature data points and fit at the SWI. B: Yearly temperature profiles at Eckerförde Bay. C: Gas phase seasonality and comparison to acoustic data.

Variations in temperature at the SWI (fig. 6a) lead to heat diffusing into the sediments. The heat capacity of the sediment produces lag times reflected in both the temperature profiles (fig. 6B) and the monthly variations in the methane bubble depth (MBD) (fig. 6C). In the early winter, when the gas is shallowest, the propensity for $CH_{4(q)}$ escape increases.

Conclusions

- CH_{4(q)} produced in shallow sediments with high POC content has a greater propensity towards migration than dissolved methane. - CH_{4(q)} transport effectively delivers CH₄ to the SMTZ and leads to increased AOM rates.

- AOM in Eckernförde Bay is strong enough to consume both dissolved and gaseous methane leading to negligible gas escape into the water column. - Understanding CH_{4(q)} dynamics can lead to the development of costeffective tools that can predict CH₄ fluxes and integrated AOM rates.

NWO Acknowledgements: This project was funded by NWO Vidi Award #864.05.00

References:

Dale et al., 2008, *Geology*, Accepted Martens et al., 1998, Cont. Shelf Res., v. 18, p. 1741-177 Martens et al., 1999, Amer. Journ. Sci., v. 299, p. 589-610 Mogollón et al., 2008, Amer. Jour. Sci., Accepted Schlüter et al, 2000, Geochim Cosmochim Acta, v. 64 p.821–834 Treude et al, 2005, *Limnol. and Oceanogr.*, v. 50, p. 1771-1786. Wever et al., 2006, *Mar. Geo.*, v. 225, p. 1-4.