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Introduction Proximal N:P ~ 14:1

river input - colian
Under many climate and aquifer conditions, continental groundwater contributes freshwater and associated nutrients as baseflow to river coastal % demitrification Tj@ ot N
flow, but also as submarine groundwater discharge (SGD) directly to the coastal zone (Church 1996). At the global scale, near-shore ocean

Phytoplankton (mostly N-limited)

Redfield N:P = 16:1 ::>

coastal water bodies are generally said to be nitrogen (N)-limited (Howarth and Marino 2006). Inputs from river water are mainly at or
slightly below Redfield ratio (N/P~14) (Seitzinger et al. 2005). As phosphorus (P) is mostly efficiently retained in groundwater systems

(Spiteri et al. 2008), continental groundwater directly discharging into the sea (SGD) mainly shows N/P ratios >> 16, especially in groundwater export to
agricultural areas. Box modelling has shown that nutrient inputs via SGD have the potential to significantly affect coastal zone nutrient oo vt tnput recycling Sﬁlellt;nental
cycling at the global scale (Slomp and van Cappellen 2004) that can lead to increased eutrophication or hypoxia. Most studies on the e Fertilizer N, P N:P mostly

nutrient flux to the coastal zone by SGD have focused on local to regional scales (mainly in the U.S. and Europe), concentrating on areas o1 B e [>>>10 all

of high total SGD including recycled fluxes from the saltwater / freshwater mixing zone. While at local scales, the effects of this recycling SWBR

in the ‘subterranean estuary’ are important to understand short-term changes in nutrient availability, at the global scale, quantification of %Tf’“ { Input .

the yet poorly constrained net fluxes of freshwater and nutrients discharged via this transport path to the oceans is crucial. TT————— xw b Nutrient

2 Transport

H e : : = . : . . - (Slomp & Van Cappellen, 2004) Cawater 3 Removal "
Main aim: we present the first steps towards spatially-explicit estimates of nutrient inputs to the coastal zone via freshwater SGD: SUblorranean estuay = miing zone of Saltwater and reshwater controls

(1) using baseflow estimates from a global hydrological model, combined with + Potentialy important source of iew nutfents o cosstal waters
(2) assessments of nutrient concentrations in coastal groundwater bodies. : fresh G supplies mastly N, less P {in shallow, oxic, coastal GW bodies)

* Deep GW supply mostly minor & not contaminated

PC-Raster based Hydrological Model, tuned for base flow conditions
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Combine with land-use and population data

1) Coastal ribbon definition for SGD/

Rural population & Land use . distance to water divide at coast
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B e 5200 - WaAter diversion by canals not yet

Problem: =;jjjzg'_3f£:_858 considered (but no global data available)

what is a stream? _ _
> every catchment that has a 3) Groundwater quality data Ex.: USGS

cumulated upstream area - IGRAC / TNO: country-wide data . Groundwater
> xX km2 - USGS, EEA: large DB available . NO, data

> testing possible - for other places: link to income A % g}
(GDP) and data from selected B -

studies on some coastal GW sites Agric. Urb. Misc. Undev.

o Nutrient sites

Agricultural land use and rural population

Both below average

Above average rural population

Above average agricultural land use >
_
Both above average Zones with elevated groundwater discharge and nutrient input

|:|Lowbaseflow, low input SE ASIa (eSp IndoneSIa)
% LOICZ COaSta| ZOne highlighted \:ILowbaseﬂowinareawithabove-averagerural population and Central AmerlCa are

:l Low base flow in area with above-average agricultural land use
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|:| High base flow in area with above-average rural population

- High base flow in area with above-average agricultural land use baseﬂOW, h ig h ru nOff and
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- Very local phenomena not detected activity) — exact locations

- Total GW flow in coastal cells, not SGD and time scales may be
- GW abstraction and saltwater intrusion not yet considered different
- Effect of residence time in GW on nutrient concentrations not yet considered

Conclusions
« Various direct pathways of coastal groundwater and associated nutrients to the coastal ocean;
flows are highly variable, both spatially and temporally, and depend on redox conditions in the
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