Using Incentives as Traffic Management Tool: Empirical Results of the ‘Peak Avoidance’ Experiment

Dick Ettemaa, Jasper Knockaertb and Erik Verhoefb

a. Utrecht University, Faculty of Geosciences, PO Box 80115, 3508 TC Utrecht
b. Free University, Amsterdam
d.ettema@geo.uu.nl

The Peak Avoidance Experiment

• Rewarding desired behaviours (travelling outside the peak, or using other modes) instead of penalising undesired behaviour

Research questions

• What is the effect of rewarding in the context of repetitive behaviour?
• What is the longer term effect of rewarding?
• Which constraints affect the behavioural responses to reward policies?

Design of the experiment

Location and timing

• A12 motorway between Zoetermeer and The Hague (6000 vehicles in the morning peak).
• 340 commuters between Zoetermeer and The Hague were rewarded during 10 weeks (October-December 2006)

Incentive strategy

• Participants were rewarded if they did not travel by car in the peak period (7.30-9.30), but:
 • travel by car before or after the peak
 • travel by public transport, carpool or bicycle
 • telecommute

Two reward options

• 3 monetary reward options: 1. 3 euro to avoid the 7h30–9h30 peak hour 2. 7 euro to avoid the 7h30–9h30 peak hour 3. as 2, but 3 euro when travelling between 7h30-8h00 or 9h00-9h30
• credits to earn a Smartphone: 60% of peak periods needs to be avoided

Detection and data

• Car detection with on-board-units
• travel diary to record use of other modes, telecommuting and non-working days
• behavioural data also collected 4 weeks before and 2 weeks after the reward period

Effects of monetary reward

• without reward: 50% travels by car in the peak
• 3 EURO reward: 26% travels by car in the peak (-48%)
• 7 EURO reward or variable reward: 19-20% travels by car in the peak (-60%)
• primary behavioural response: shift to periods before and after peak
• no structural behavioural change following the reward

Situational effects

• logistic regression models of behavioural responses

Results

• flexible work hours and availability of alternative modes increase behavioural change
• being a single parent prohibits early work start
• high education increases the probability of telecommuting
• users of travel information are more likely to avoid the peak

Conclusions

• using rewards (3-7 EURO or credits for a Smartphone) reduce car use in the peak by more than 50% (but for a self-selected group)
• most car trips are rescheduled to the periods before and after the peak
• when the reward ends, participant return to their original behaviour

Detection and data

• Car detection with on-board-units
• travel diary to record use of other modes, telecommuting and non-working days
• behavioural data also collected 4 weeks before and 2 weeks after the reward period

Effects of monetary reward

• without reward: 50% travels by car in the peak
• 3 EURO reward: 26% travels by car in the peak (-48%)
• 7 EURO reward or variable reward: 19-20% travels by car in the peak (-60%)
• primary behavioural response: shift to periods before and after peak
• no structural behavioural change following the reward

Situational effects

• logistic regression models of behavioural responses

Results

• flexible work hours and availability of alternative modes increase behavioural change
• being a single parent prohibits early work start
• high education increases the probability of telecommuting
• users of travel information are more likely to avoid the peak

Conclusions

• using rewards (3-7 EURO or credits for a Smartphone) reduce car use in the peak by more than 50% (but for a self-selected group)
• most car trips are rescheduled to the periods before and after the peak
• when the reward ends, participant return to their original behaviour