A New Pore-Network Model for Granular Media;

Application for P¢-SW and a"™-SW Relationships
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We consider two different cross sections for pore throats:
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o cross sections are the most frequent one. We could reproduce
size distribution of the beads fairly good (Fig 9). Furthermore,
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Fig 10. a) Simulated F*-$"-a"" surface for drainage, b) Simulated ¢-$"-a"" surface for imbibition, predictive pore-network models.

c) Difference between simulations and experimental data normalized by experimental data.




