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Motivation interpolation with a support
• Increased interest in geostatistical methods for variables which has a support
• Examples:

Regionalisation of runoff variables
Health statistics

• Support can be spatial and/or temporal
• Methods includes integrals of variogram/covariance functions

INTAMAP
• The INTAMAP project (www.intamap.org) will develop an interoperable framework for real time automatic mapping of critical environmental variables by extending spatial statistical methods and 

employing open, web-based, data exchange and visualisation tools
• Development case focuses on data from the data base of gamma radiation in Europe – EURDEP – but final software will also include real-time predictions of observations having a support

Conclusions 
• Approximation works in many cases
• Stability of kriging matrix needs to be further checked
• Use of Ghosh-approximation only possibility for real time mapping
• Calculation of ghosh-distances slow, but can be done before real-time mapping takes place
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Example: Predictions annual mean flow
• Annual mean flow from 383 stations in Austria
• Top-kriging method (Skøien et al, 2006) used for predictions at locations without 

observations
• Geostatistical distance used instead of regularization as in original
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Difficulties with regularization
• Integrations can be slow and lead to numerical instabilities
• Fast and robust methods necessary for real–time interpolation, as developed within the INTAMAP 

project (www.intamap.org)
• Possible solution: Replacing the integral with an approximation, suggested by Gottschalk (1993)

Comparison variogram values
• Sample variogram values (binned) estimated for annual mean 
• Figures below show observed versus fitted semivariances for the two methods
• Models are qualitatively similar but give large scatter – probably effect of some 

violation of stationarity assumptions

Cross-validation of predictions
• Ghosh approximation does not tend to be more stable than for Top-kriging
• Some very large weights observed
• Below: Comparison of predictions from the two methods, compared with observations and 

standard deviations
• Units: m3/s/km2
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• Expnential correlation function
• Different orders of Taylor expansion
• T = temporal support relative to 

correlation length

Effect of number of discretization points
• Number of discretization points limited importance for correlation between observations and 

predictions (left)
• Correlation between zscore (residual/kriging standard deviation) should ideally be zero
• Strong (negative) correlation between zscore and area for point kriging (middle)
• Correlation decreasing with increasing number of discretization points (right)

Approximation
• Suggested by Gottschalk (1993) - replace integration with expectations using Taylor expansion
• The covariance can be expressed through the correlogram:

• Where d represents distances between points in the two catchments
• The approximation can similarly be derived for the variogram:

• ,      and      represent the expected distances between points within the first catchment, the 
second catchment, and between the two catchments, respectively

• Approximation can generally be referred to as Ghosh approximation from Ghosh (1951)
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Time consumption
(Just indicative)
Max number of 
points

Regularization 
Time (seconds)

Ghosh-distance 
Time (seconds)

16 19 23

25 24 41

100 135 470

400 1821 7423

Above: Comparison between sample 
semivariances and fitted semivariances 
for regularization and Ghosh-distance

Right: Comparison between estimated 
semivariogram values from same point 
variogram for regularization and Ghosh- 
distance
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