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Variations in temperature at the sediment-water interface (fig. 6a) lead to 
heat diffusing into the sediments. The heat capacity of the sediment 
produces lag times reflected in both the temperature profiles (fig. 6B) and 
the monthly variations in the methane bubble depth (MBD) (fig. 6C). In the 
early winter, when the  gas is shallowest, the propensity for CH4(g) escape 
increases.
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Fig. 1: a Sketch of the geochemical 
processes during low (top) and 

high (bottom) CH4 saturation

During pressure drops, the 
methane solubility will 
decrease and stimulate gas 
formation in the porewater. 
The magnitude of the gas 
formation and its increase 
with respect to the steady-
state gas pool will depend 
on both the magnitude and 
the duration of the pressure 
drop (Fig 5). For Eckernförde 
Bay, tidal fluctuations and 
atmospheric pressure 
changes are not long and 
sufficient enough to trigger 
gas escape.

Pressure effects on gas inventory

Gas effects on AOM

Increasing POC fluxes increase the SR rates, amplifying the zone of MET and 
thus the CH4 (g) generated and AOM intensity. If CH4 (g) is ignored (implicit - Fig. 
7), integrated AOM rates reach a plateau and may be underestimated with 
respect to simulations that include CH4 (g) (explicit - Fig. 7). Furthermore, a 
temperature drop will both decrease in the intensity of microbial activity and 
increase gas dissolution rates (Fig. 8).  These opposing processes for AOM will 
shift in magnitude for sediments according to the MBD: When shallow, 
temperature dominates and when deep gas dissolution dominates.

Introduction

The strong correlation 
between the MBD and CH4 
fluxes to the SMTZ can lead 
to predictions of the CH4 
turnover rates (integrated 
AOM rates) when CH4(g) 
escape from the sediment 
is negligible.  Dale et al. 
(2008) developed MBD-
CH4 flux curves for various 
CH4 saturations based on 
acoustic survey profiles (a 
standard mapping 
technique) and measured 
AOM rates. Our preliminary 
seasonal simulations show 
the same effect (Fig. 9).

Fig. 7. Integreted AOM vs. POC fluxes

Fig. 9. Methane fluxes as a function of the 
methane bubble depth
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Fig. 6: A Temperature data points 
and fit at the SWI. B: Yearly 
temperature profiles at Eckerförde 
Bay. C: Gas phase seasonality and 
comparison to acoustic data. 
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Temperature at the sediment-water interface
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Fig. 4 Simulated and measured 
(Martens et al., 1999, ) geochemical 

rates at Eckernförde Bay 
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- Seasonal variations in temperature at the SWI lead to pronounced changes 
in solubility and, consequently the methane bubble depth.
- Pressure drops due to storms and intense wind activity may lead to ample 
gas formation, but at the daily time scales these are too short to allow gas 
escape for MBDs > 50 cm
- Seasonal AOM cycles are influenced by the dissolution of CH4 (g), which 
sustains the CH4 (aq) concentrations as methane is consumed in AOM. 

Fig. 3: Simulated and measured 
(Martens et al., 1998, Wever et al., 2006) 

geochemical profiles at Eckernförde Bay 
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The solubility of free 
methane gas depends 
on the local pressure, 
temperature and 
salinity. Figure 2 shows 
a calibrated algorithm 
that predicts the 
methane solubility as 
a function of these 
parameters for 
shallow water 
conditions. These 
parameters may vary 
accros time

A 1D, 3-phase model was built to explore the fate of CH4 (g) in Eckernförde Bay 
(Mogollón et al., 2009). The model was calibrated with measured 
concentration and rate profiles from Martens et al (1998, 1999) (Figures 3,4)

Particulate organic carbon (POC) degradation 
coupled to SO4

2- reduction takes place in the 
upper parts of anoxic sediments. Once SO4

2- 
reaches sub-mM concentrations, methanogenesis 
(MET) begins.  When MET is high, the local CH4 (aq) 
may exceed the CH4 solubility leading to CH4 (g) 
formation. Upward gas migration and dissolution 
in the overlying undersaturated sediment 
enhance methane consumtion in the presence of 
SO4

2- through a process known as anaerobic 
oxidation of methane (AOM). If sufficient, gas may 
also escape the AOM barrier and leave the 
sediment.  Seasonal variations in the CH4 solubility 
can leat to times of preferetial CH4 (g) production  
and CH4 (g) dissolution (Fig 1), which are crucial for 
determining the methane cycle. 
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Fig. 2. CH4 saturation variations for a shallow 
(< 30 m) marine to brackish sediment

Fig. 5. Variations in the integrated gas pool 
with respect to the steady-state values  (Figs 

2,3) due to sustained pressure drops
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Fig. 8. Seasonality ofthe integrated AOM rates and 
the integrated gas pool
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