Vegetation-Climate Feedbacks

Stefan Dekker

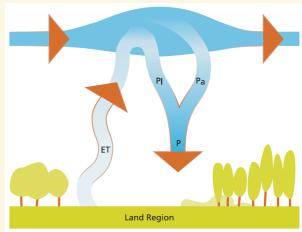
Environmental Sciences, Faculty of Geosciences, Utrecht, Netherlands

Vegetation and climate markedly influence each other through modification of surface albedo and evapotranspiration by numerous relevant vegetation-climate feedbacks. Changes in land-use can switch the vegetation and climate states suddenly and unexpectedly.

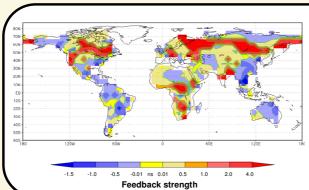
Vegetation Climate Anthropogenic land-use change

Vegetation cover Stress level Desert state

Positive vegetation-climate feedback: Sudden collapse from vegetated state to desert state.


Goals

oTo understand the strength of vegetation-climate feedbacks from local to global scales oAnalyse whether net positive feedbacks are strong enough to lead to regime shifts.


Importance

This study is important for:

- Large scale land use changes (e.g. Amazon, transitions to biofuel)
- Regions which are sensitive to vegetation-climate feedbacks (such as Monsoon areas);
- \circ Understanding tipping points in the climate system;
- OUnderstanding climate shifts during the Roman Warm Period, maybe triggered by large scale deforestation.

Positive vegetation-climate feedback: Increase in Evapotranspiration (ET) leads to increase of local precipitation (P_I) and in turn increase in vegetation and ET. P_a is advective precipitation.

Global Vegetation-Climate feedbacks

For current climate, we have performed perturbations of biomass change to model the vegetation-climate feedbacks strenghts (FB; Dekker et al. 2009).

FB>1 means a positive feedback. Biomass perturbation is amplified.

amplified.
0<1<FB means a negative feedback. The system moves back to

the original climate and vegetation state.
FB<0 means an opposite effect. The positive feedbacks of one region(FB>1) negatively influence these regions.