Anastomosing rivers are disequilibrium patterns

Research group

Universiteit Utrecht River and delta morphodynamics

Eva Lavooi¹, T. de Haas¹, M.G. Kleinhans², B. Makaske³ & D.G. Smith⁴

MSc student Physical Geography, Utrecht University, evalavooi@gmail.com
 Utrecht University, Faculty of Geosciences, Department of Physical Geography
 Alterra, Wageningen, Netherlands

4) Department of Geography, University of Calgary, Alberta, Canada

Introduction

Anastomosing rivers have multiple interconnected channels:

But what is the origin of anastomosis?

 Equilibrium: Optimizing water and sediment transport¹.

Or

- **Disequilibrium**: Tendency to avulse due to upstream sediment overloading².
- Tested on the upper Columbia River with a geological and modelling approach.

Methods

Geological approach:

- Analyzing a trend in bedload deposition by:
 - Investigation of three geological cross-sections (Fig. 1).
 - Derivation of channel and floodplain sediment volumes and sedimentation rates.

Modelling approach:

- Test if multiple channels can be in equilibrium:
 - Schematisation based on measured lengths of channels.
 - 1D network model run³ (poster Tjalling de Haas).

Downstream trend of decreasing bedload deposition Channel Levee Crevasse Floodbasin Channel Levee Crevasse Floodbasin On the proportion of the proportion

Figure 2. Sedimentary trend, measured with surface mapping. A: all widths of sedimentary environments. B: proportions without floodbasin deposits

Longitudinal profile of the upper Columbia River main channel

Results

Geological approach:

- Downstream trend of decreasing number of channels and decreasing bed sediment deposition (Fig. 2).
- Extensive crevasse splays in the upstream section and an increased bed elevation and gradient demonstrate a tendency to avulse due to overloading of bed sediment (Fig. 2, 3).
- Measured bedload transport indicates bed material overloading (Fig. 3).
- ¹⁴C dating confirms a decrease in long-term average floodplain sedimentation rate in downstream direction.

Modelling approach:

- Network always evolves to a single active channel, because multiple channels have more hydraulic resistance.
- Model predicts the main course of the present river when accounting for channel lengths and bends at bifurcations and discounting beaver dams, human interference and presence of a trifurcation (Fig. 4).

Bed-material load deposition in m³/1000yr Estimated bed-material load from genetic profiles

Measured or predicted bed load from Makaske et al. (2009)

Prediction from fitted bed load transport 770 Harrogate` mm/yr E 768 mm/yr Castledale Parson lower anastomosing reach upper anastomosing reach $m^3/1000yr$ $m^3/1000yr$ 8.80×10^7 3.83×10^7 764 Distance from Spillimacheen Bridge (km)

Figure 3. Bed-material load deposition in the upper and lower anastomosing reach. Red: from genetic profiles derived with the geological valley width cross-sections. Yellow: data from Makaske et al. (2009). Green: calculated with a fitted bed load transport predictor.

Modelled discharge division of the upper Columbia River

Figure 4. Results of the 1D network model. The predicted main course corresponds with the main course of the present river.

Conclusions

- Sediment overloading led to an anastomosing river pattern, so anastomosing rivers are disequilibrium patterns.
- In-channel aggradation and avulsions are followed by slow channel fill so that multiple channels remain open for a long time.
- Morphodynamically the upper Columbia River is a single-channel system, because one channel transports the majority of the sediment, but multiple channels convey flood discharge.

Figure 1. Aerial photograph of the upper Columbia River with the location of the three crosssections (Source: Google Earth).

References

- 1) Huang, H.Q. and Nanson, G.C. (2007). Why some alluvial rivers develop an anabranching pattern. Water resource research 43.
- 2) Makaske, B., Smith, D.G., Berendsen, H.J.A., de Boer, A.G., van Nielen-Kiezebrink, M.F., Locking, T. (2009). Hydraulic and sedimentary processes causing anastomosing morphology of the upper Columbia River, British Columbia, Canada. Geomorphology 111.
- 3) Kleinhans, M.G., Jagers, H.R.A., Mosselman, E., Sloff, C.J. (2008). Bifurcation dynamics and avulsion duration in meandering rivers by one-dimensional and three-dimensional models. Water resources research 44.

Acknowledgements

- Netherlands Organisation of Scientific Research (NWO, grant ALW-Vidi-864.08.007 to M.G. Kleinhans)
- Molengraaff Foundation (Delft University of Technology)

