Stability of river bifurcations from bedload to suspended load dominated conditions

Research group
River and delta morphodynamics

Tjalling de Haas and Maarten G. Kleinhans
tjallingdehaas@gmail.com

Introduction

- Bifurcations unstable?
- Difference between gravel- and sand-bed rivers?

Model

- 1D network model with Y-shaped bifurcation:
 - Gradually varied flow, bedload transport and morphological change
 - Width: \(f(Q) \), mass conserved
 - Flow and sediment division: transverse slope effect and spiral flow effect caused by bend

Problem definition

- Opposite trend gravel- and sand-bed rivers
- Hypothesis: connected by optimum?

Results

Model scenarios

- Bifurcations unbalanced:
 1. Bend at bifurcation
 2. Gradient advantage
- Mobility increased:
 a. Discharge
 b. Channel gradient
 c. Particle size
- Sediment transport
 — Including threshold for sediment motion
 — Excluding threshold for sediment motion

Conclusions

- Threshold for motion \(\rightarrow \) Optimum
- Gravel-bed rivers \(\rightarrow \) Shields stress lower than optimum
- Sand-bed rivers \(\rightarrow \) Shields stress higher than optimum
- Opposite trend explained!

Acknowledgements

- Netherlands Organisation of Scientific Research (NWO) (grant ALW-Vidi-864.08.007 to Dr. Maarten G. Kleinhans)
- Molengraaff Funding
- Thanks to E. Lavooi, Dr. B. Makaske, prof. D.G. Smith and W.M. van Dijk for their help during the fieldwork

References

Problem definition

- Opposite trend gravel- and sand-bed rivers
- Hypothesis: connected by optimum?

Model

- 1D network model with Y-shaped bifurcation:
 - Gradually varied flow, bedload transport and morphological change
 - Width: \(f(Q) \), mass conserved
 - Flow and sediment division: transverse slope effect and spiral flow effect caused by bend

Model scenarios

- Bifurcations unbalanced:
 1. Bend at bifurcation
 2. Gradient advantage
- Mobility increased:
 a. Discharge
 b. Channel gradient
 c. Particle size
- Sediment transport
 — Including threshold for sediment motion
 — Excluding threshold for sediment motion

Results

Conclusions

- Threshold for motion \(\rightarrow \) Optimum
- Gravel-bed rivers \(\rightarrow \) Shields stress lower than optimum
- Sand-bed rivers \(\rightarrow \) Shields stress higher than optimum
- Opposite trend explained!

Acknowledgements

- Netherlands Organisation of Scientific Research (NWO) (grant ALW-Vidi-864.08.007 to Dr. Maarten G. Kleinhans)
- Molengraaff Funding
- Thanks to E. Lavooi, Dr. B. Makaske, prof. D.G. Smith and W.M. van Dijk for their help during the fieldwork

References