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Introduction

We aim to invert seismic waveforms by using artificial neural networks. Neural networks
can be viewed as non-linear filters and are very common in speech, handwriting and pattern
recognition. We use neural networks to extract information on the seismic source and Earth
structure which is contained in a seismogram.

We show the general concepts of two applications here. The first application can be viewed
as a pattern recognition problem. The goal is to perform full seismic waveform inversion and
invert for Earth structure and seismic source. A second application treats the seismogram as
a discrete time series by using recurrent neural networks, which are the non-linear equiva-

lent of recursive filters. Here the aim is to use the first arriving seismic waves to predict later
arriving seismic phases.

To be able to train a neural network, a so-called training set is needed. We construct such a
training set by drawing many random Earth models (and seismic sources) from a prior model
probability density function (pdf) and solving the forward problem for each of these models,
thus generating synthetic seismograms. For global 2D and 3D Earth models, we aim to use
spectral-element methods, such as AXISEM (Nissen-Meyer et al., 2007) and in a later stage
SPECFEM3D (Tromp et al., 2008).
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Seismic waveform inversion through pattern recognition

Figure 1: A Mixture Density Network, as depicted in Bishop (1995).

We use a Mixture Density Network (MDN, Figure 1) to obtain marginal posterior pdfs of our
model parameters, thereby acquiring fully probabilistic information on the model. An MDN
can approximate an arbitrary conditional pdf as a linear combination of Gaussian kernels
(Bishop, 1995):
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where w are the adjustable parameters in the neural network used, M is the number of
Gaussian kernels, αj are the mixing coefficients, which can be interpreted as the relative
importance of the jth kernel, and φj are the spherical Gaussian kernels of the form
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where c is the dimensionality of the output vector t. The parametric distribution, which is
described by the means µj , the variances σ2

j and αj , is the output of a conventional neural
network. We use a feed-forward Multi-Layer Perceptron (MLP) with hyperbolic tangents as
non-linear activation functions. Network training corresponds to the minimisation of the
negative logarithm of Eq. (1) for a training data set. The minimisation is done using either
on-line or batch learning methods, such as gradient descent, quasi-Newton or conjugate
gradient methods.

For the application we have in mind here, seismograms would serve as the input vector x
and Earth structure or seismic source as the target vector t. The network is trained by using
a large synthetic data set that we constructed using spectral-element methods. Once the
network has been trained, it can be presented with new unseen input data, in this case real
seismograms. As output we then obtain the posterior pdf p(t|x) which represents our final
state of knowledge on the model parameters. An example of such an application is shown
for a toy problem in Figure 2.
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A toy problem – seismic waveform inversion using an MDN

Upon succesful network training, we insert new data to obtain the posterior pdf
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Figure 2: A simple example of seismic waveform inversion by using a Mixture Density Network.
(Top left) eight model parameters (ρ,VP in three layers and two interface depths) are varied in the training
set. (Top right) An example of a seismic waveform in the training data set. (Bottom) One MDN is trained
on the 1-D marginal pdf for ρupper , another on the 2-D marginal pdf for ρupper and VP,upper .

Recurrent architectures for seismic waveform prediction
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Figure 3: Left panel: Example of a two-layer recurrent artificial neural network with one input node (I),
two sigmoid units in the hidden layer (H) and a linear output node (O). Right panel: A recurrent neural
network unfolded in time.

It has previously been shown (Hammer, 2000) that recurrent neural networks (RNNs) have
very general function approximation properties. We thus use a recurrent neural network
architecture similar to the one shown in Figure 3 to extract information from seismic wave-
forms. We therefore treat the recorded signal as a discrete time-series which is fed into the
network sequentially, that is a new input is given to the network at each time-step. A recur-
rent network is able to ’memorize’ previous inputs by feeding hidden layer output signals
back into the neurons at the next time-step. Thus at each time-step the output of a recurrent
network y(t) is a function of the complete history of the input signal x(t) so far:
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where wij denotes the connection weight from the ith to the jth unit and g(·) is a non-linear,
sigmoid activation function. An optimal set of network parameters is found during the
training stage using an on-line back-propagation algorithm.

Although in theory the whole signal history is available to the network at each time-step,
given the number of hidden units is large enough, in practice the amount of past values that
can be used for training is limited, due to a problem known as vanishing error gradient.
This can be overcome by using an extension to the standard RNN architecture called
Long-Short-Term-Memory (Hochreiter and Schmidhuber, 1997).

The recurrent approach may have advantages over a classical feed-forward approach:
(1) The reduced input dimensionality leads to a smaller number of network parameters,
leading to faster convergence during the training stage. (2) It is not necessary to determine
the sequence length in advance, which makes it feasible to use the network for on-line tasks,
such as real-time earthquake localization and source-inversion as well as the prediction of
later arriving phases.

In order to assess the capabilities of a RNN to perform the latter task, we set up a very simple
toy problem. We simulate wave propagation in a 2D homogeneous medium and vary the
location of a moment-tensor point source. Synthetic waveforms are recorded at a single
station and fed into a LSTM recurrent network, which is trained on the arrival time of the S
phase. The trained network is then tested by processing previously unseen P wave sequences
which give rise to S wave arrival time predictions. Exemplary results from a trained network
are given in Figure 4.
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Figure 4: Leftmost panel: Synthetic P waves are given as an input to a LSTM recurrent network sequen-
tially while training it on S wave arrival times as targets. Shown on the right are network predictions
from a trained network on an independent test set after 5, 10 and 17 timesteps have been presented to the
network. Each dot corresponds to one of the traces shown on the left. As can be seen, the more of each
sequence is available to the network, the more accurate the prediction gets.


