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Overview
Seismograms tend to be quite distinctive; an experienced seismologist can easily distinguish between
seismic data and many other time series. What does this mean? In effect, an N -point time series may
be regarded as a single point in N -dimensional space. However, N -point seismograms occupy only a
subset of this space; in effect, they exist in a lower-dimensional space. What is the dimension of this
space, and how can we explore it? How does it vary with different classes of seismic data?

Hinton & Salakhutdinov (2006) showed that a class of neural networks known as ‘autoencoders’ can
be used to find lower-dimensional structure within a dataset, by attempting to construct a lossless
representation of each datum in a lower-dimensional space. We consider how this might be applied to
seismic data, and what possible applications are revealed.

Autoencoder networks
An ‘autoencoder’ is a network trained to output a faith-
ful representation of its inputs. Its architecture is such
that there are fewer nodes in hidden layers than in the in-
put/output layers. The values of nodes in a hidden layer
can then be taken as an encoded form of the inputs, and
the autoencoder may be regarded as an encoder/decoder
pair.

Autoencoders are described by specifying the number of
nodes per layer; the above therefore depicts a 7-6-4-6-7 au-
toencoder. We use logistic neurons, which implement

f(x) = f0 +
f1 − f0

1 + exp (−x)
,

for constants f0, f1. We denote the values of the n-th layer
of nodes by x(n). Associated with each neuron are weights

corresponding to each input, W, a bias, b, and a sensitivity,
a. For the i-th element of x(n), we therefore have
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We define a measure of the difference between L network
inputs, x(0), and outputs, x(N), across a dataset of M ex-
amples
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and we adjust Wij , ai and bi to reduce this error. This may
be achieved by updates according to
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Here, η is a learning rate parameter, controlling the amount
of information the network assimilates at each step. Re-
peated application of these rules is necessary, owing to the
inherent non-linearity of the system.

Pre-training the autoencoder
Autoencoder training from scratch is slow, and for complex
datasets non-linearity may prevent satisfactory progress.
Hinton & Salakhutdinov (2006) demonstrate that this can
be circumvented via a layer-by-layer pre-training stage. For
this, we make use of Continuous Restricted Boltzmann Ma-
chines (CRBMs) – see Chen & Murray (2003). These are
two-layer networks, with a stochastic relationship between
layers. The visible nodes, xv, are used to update the hidden
nodes ,xh, according to
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with G(µ, σ) representing a random sample from a Gaussian
distribution of mean µ and standard deviation σ. Similarly,
the hidden nodes may be used to update the visible nodes:

xvj = f

(
avj

(
bvj +

N∑
i=1

wijx
h
i + G(0, σ)

))
.

The visible-to-hidden and hidden-to-visible connections
share (transposed) weight matrices, but have independent
biases and sensitivities, and the CRBM training rules seek
to find and enhance correlations between visible and hidden
nodes (Chen & Murray, 2003)
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where angled brackets 〈χ〉 denote the average value of χ
across all samples in the training set, and ‘hats’ denote
values when the CRBM is encoding its own outputs. Again,
η acts as a learning rate parameter.

Suppose we wish to construct a 500-250-125-250-500 au-
toencoder. We begin by creating a CRBM with 500 visible
and 250 hidden nodes. After training for a number of itera-
tions, we use this this to convert our dataset of 500-element
vectors into 250-element vectors. This reduced dataset is
then used to train a CRBM with 250 visible and 125 hid-
den nodes. This may be used to assemble a pre-trained
autoencoder, as shown below.
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Applications
There are a number of potential applications of the autoen-
coder method, and directions for further investigation:

• Quality control – good-quality traces can be recovered
accurately after encoding, noisy traces cannot. Can
this be used to identify high-quality traces in seismic
databases?

• Noise removal – if a trace containing moderate noise is
encoded and recovered, is the resulting trace ‘cleaner’
than the original?

• Sorting and searching of databases – can we relate wave-
form characteristics to particular aspects of their en-
coded representations?

• Non-linear tomography – tomographic methods based on
neural networks are attractive, but computationally chal-
lenging. Reducing the dimension of the data-space is
therefore extremely beneficial.

• Can computation be carried out in the encoding domain?
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Demonstration
• Construct and train a 512-256-128-64-32-64-128-256-512

autoencoder.
• Training dataset: 880 good-quality 512-point seismo-

grams chosen at random from magnitude 6+ events in
2000; sampled at 16-second intervals, filtered to contain
frequencies below 7.4 mHz.
• Monitoring dataset: 276 good-quality 512-point seismo-

grams, chosen similarly to training dataset. Not provided
to network during training.
• 500 CRBM training iterations; 500 training iterations us-

ing assembled autoencoder.

Left: A ‘basis’? 32
waveforms bi generated by
decoding the unit vectors
(1, 0, . . . , 0), (0, 1, . . . , 0) etc.
Figure shows ‘orthogonality’
matrix

Mij =
bi·bj

bi·bj

Note, however, that our de-
composition is non-linear.

We take 512-point waveforms (black), encode them in a 32-element representation, and then decode (red). We find a
good agreement (blue). Shown are the best and worst three traces in the training set (left) and monitoring set (right).
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