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Overview

Seismograms tend to be quite distinctive; an experienced seismologist can easily distinguish between
seismic data and many other time series. What does this mean? In effect, an N-point time series may
be regarded as a single point in /N-dimensional space. However, /N-point seismograms occupy only a
subset of this space; in effect, they exist in a lower-dimensional space. What is the dimension of this
space, and how can we explore it?7 How does it vary with different classes of seismic data?

Hinton & Salakhutdinov (2006) showed that a class of neural networks known as ‘autoencoders’ can
be used to find lower-dimensional structure within a dataset, by attempting to construct a lossless
representation of each datum in a lower-dimensional space. We consider how this might be applied to
seismic data, and what possible applications are revealed.

Autoencoder networks

An ‘autoencoder’ is a network trained to output a faith-
ful representation of its inputs. Its architecture is such
that there are fewer nodes in hidden layers than in the in-
put/output layers. The values of nodes in a hidden layer
can then be taken as an encoded form of the inputs, and
the autoencoder may be regarded as an encoder/decoder
pair.
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Decoder

Autoencoders are described by specifying the number of
nodes per layer; the above therefore depicts a 7-6-4-6-7 au-
toencoder. We use logistic neurons, which implement
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for constants fp, f1. We denote the values of the n-th layer
of nodes by x(™. Associated with each neuron are weights

Demonstration

e Construct and train a 512-256-128-64-32-64-128-256-512
autoencoder.

e Training dataset: 880 good-quality 512-point seismo-
grams chosen at random from magnitude 6+ events in
2000; sampled at 16-second intervals, filtered to contain
frequencies below 7.4 mHz.

e Monitoring dataset: 276 good-quality 512-point seismo-
grams, chosen similarly to training dataset. Not provided
to network during training.

e 500 CRBM training iterations; 500 training iterations us-
ing assembled autoencoder.

We take 512-point waveforms (black), encode them in a 32-element representation, and then decode (red).

corresponding to each input, W, a bias, b, and a sensitivity,
a. For the i-th element of x(™), we therefore have
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We define a measure of the difference between L network
inputs, x(9, and outputs, x), across a dataset of M ex-
amples
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and we adjust W;;, a; and b; to reduce this error. This may
be achieved by updates according to
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Here, 1 is a learning rate parameter, controlling the amount
of information the network assimilates at each step. Re-
peated application of these rules is necessary, owing to the
inherent non-linearity of the system.

Left: A ‘basis’? 32
waveforms b; generated by
decoding the unit wvectors

(1,0,...,0), (0,1,...,0) etc.
Figure shows ‘orthogonality’
matrix
b.-b.
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Note, however, that our de-
composition is non-linear.
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We find a

good agreement (blue). Shown are the best and worst three traces in the training set (left) and monitoring set (right).
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Pre-training the autoencoder

Autoencoder training from scratch is slow, and for complex
datasets non-linearity may prevent satisfactory progress.
Hinton & Salakhutdinov (2006) demonstrate that this can
be circumvented via a layer-by-layer pre-training stage. For
this, we make use of Continuous Restricted Boltzmann Ma-
chines (CRBMs) — see Chen & Murray (2003). These are
two-layer networks, with a stochastic relationship between
layers. The visible nodes, x¥, are used to update the hidden
nodes ,x", according to
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with G(u, o) representing a random sample from a Gaussian
distribution of mean i and standard deviation o. Similarly,
the hidden nodes may be used to update the visible nodes:
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The wvisible-to-hidden and hidden-to-visible connections
share (transposed) weight matrices, but have independent
biases and sensitivities, and the CRBM training rules seek
to find and enhance correlations between visible and hidden

nodes (Chen & Murray, 2003)
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where angled brackets (x) denote the average value of y
across all samples in the training set, and ‘hats’ denote
values when the CRBM is encoding its own outputs. Again,
n acts as a learning rate parameter.

Suppose we wish to construct a 500-250-125-250-500 au-
toencoder. We begin by creating a CRBM with 500 visible
and 250 hidden nodes. After training for a number of itera-
tions, we use this this to convert our dataset of 500-element
vectors into 250-element vectors. This reduced dataset is
then used to train a CRBM with 250 visible and 125 hid-
den nodes. This may be used to assemble a pre-trained
autoencoder, as shown below.
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Autoencoder

Applications

There are a number of potential applications of the autoen-
coder method, and directions for further investigation:

e (Quality control — good-quality traces can be recovered
accurately after encoding, noisy traces cannot. Can
this be used to identity high-quality traces in seismic
databases?

Noise removal — if a trace containing moderate noise is
encoded and recovered, is the resulting trace ‘cleaner’
than the original?

Sorting and searching of databases — can we relate wave-
form characteristics to particular aspects of their en-
coded representations?

Non-linear tomography — tomographic methods based on
neural networks are attractive, but computationally chal-
lenging. Reducing the dimension of the data-space is
therefore extremely beneficial.

Can computation be carried out in the encoding domain?
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