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Overview
Seismic tomography attempts to improve an earth model by matching synthetic (forward-modelled)
seismograms to global recordings of ground motion following earthquakes. However, these calculations
depend upon knowledge of the spatio-temporal location of the event, and the manner in which energy
was released. Typically, this information is obtained via a second inverse problem, using a similar—if
not identical—dataset.

Some questions:

• How do we quantify the uncertainty on a set of seismic source parameters? The earth model used
during determination contains errors, and forward modelling may not be exact—and, of course,
the data contains noise and measurement errors.

• How do these uncertainties propagate into the updated earth model? Can we do anything to
mitigate such effects?

• Do we have independent information on sources and structure? Can we know both accurately?
Valentine & Woodhouse (2010) suggest that a joint inversion for sources and structure leads to
more accurate earth models, but less accurate sources — can this be explained?

• Can we quantify the information content of seismograms? How do we best access that information?
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Uncertainty in source parameters
Earthquakes are typically described by a ‘centroid–moment-
tensor’ (CMT) source: the spatio-temporal location of the
centroid of rupture, and a symmetric tensor describing the
energy release. There are ten independent parameters: six
independent moment tensor components, three spatial co-
ordinates, and time. We represent these by the ten-element
‘source vector’ f . CMTs are determined (Dziewonski et al.,
1981) by minimising the least-squares misfit between data,
d, and synthetic, s, defined

m2 =
(d− s)

T
(d− s)

dTd
, (1)

leading to the standard iterative solution

fi+1 = fi +
(
ATA

)−1
AT (d− s) . (2)

Here, A is a matrix of partial derivatives; the starting point
f0 is chosen by assuming zero energy release, and an spatio-
temporal location obtained by analysis of body wave arrival
times.

However, A and s depend on assumptions about the struc-
ture of the Earth, and the manner in which waves propagate
through it. The assumptions used are certainly incorrect;
how does this affect the validity of the solution to eq.(2)?
How do we make realistic uncertainty estimates for these
parameters?
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Above: ‘data’ was calculated for a known source using
a high-resolution model and numerical wave propagation
(S40RTS/SPECFEM; ‘body wave’ portion of seismogram).
We then compute synthetics in a low-resolution model
with an approximate technique (M84C/mode summation
& PAVA; similar to that used for source determination) for
10,000 sources ‘close’ to the correct source, and compute
their misfit (eq.(1)) against the ‘data’. Red lines denote
‘correct’ source; minimum-misfit solution is circled. Cur-
rently quoted uncertainties are tiny, and do not encompass
the true solution.

Inversion for Earth structure
Methods for structure inversion are less standardised than those for source inversion. However, one common method
(based on Woodhouse & Dziewonski, 1984; Tarantola & Valette, 1982) is also based on minimising the least-squares
misfit, eq.(1). We assume that sources are known correctly, and attempt to bring data and synthetic into agreement by
adjusting the earth model. Typically, this involves solving an inverse problem of the form

pi+1 = pi +
(
ATA+D

)−1 [
AT (d− s)−D (pi − p0)

]
, (3)

where pi represents the earth model parameters, p0 is the prior model and D is a regularization matrix.

As with source inversion, there are assumptions inherent to this process that may affect accuracy. More obviously, any
errors in the seismic sources—which, by definition, have been determined in a sub-optimal earth model—may propagate
into the updated earth model. How do we understand and minimise the effects of this?

Information and waveforms?
Hinton & Salakhutdinov (2006) introduced the concept of
‘autoencoder networks’—neural networks designed to find
lower-dimensional representations of complex datasets.

Left: Architecture
of an autoencoder
network. The
network may be
regarded as a
connected en-
coder/decoder
pair.

The network is ‘trained’ to find the optimal representation
for a dataset using a given number of free parameters. For
example, we can take a dataset of 512-point seismograms,
and generate an encoding system that allows these to be
represented using 32 numbers. Some examples of wave-
forms and their encoded representation follow:

We find that the waveforms, s, corresponding to the 32
‘unit encodings’ (1, 0, . . . , 0), (0, 1, . . . , 0) etc. are close to
forming an orthonormal set: we plot Mij =

si·sj
si·si

Does this allow us to assess the information content of par-
ticular waveforms, or classes of data? The average amount
of information per example x in a dataset, X, is given by
the ‘information entropy’ of the set, e.g.

H(X) =
∑
i

p(xi) log2 p(xi) . (4)

This can naturally be related to the ‘compressibility’ of the
system; in particular, the relative compressibilities of two
datasets is related to their relative information entropies.
Can we make use of this? Should we be worried that seismic
datasets might not be as information-rich as one would
expect?

Joint inversion for sources and structure
It is possible to form a single inverse problem for earth structure and all sources simultaneously, and solve this by an
efficient two-step algorithm in which source corrections are determined implicitly within structure inversion (see Valentine
& Woodhouse, 2010). In doing so, it is natural to extend regularization to the source terms; we use D = εI for structure,
and D = µI for source. We find that non-zero µ leads to better earth models—why?
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From left to right: errors in model recovery at 50km, 200km and 350km depth, synthetic test.

Acknowledgements


