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1 Introduction

Recent developments in computational seismology
allow for highly accurate modelling of wave propa-
gation in strongly heterogeneous media. This en-
ables us to use full seismograms as a data source
for tomographic inversions. The classical approach
to seismic tomography, however, consists of find-
ing one single velocity model of the Earth's interior
that minimises the misfit between simulated and ob-
served seismograms. It does thus not account for
the possible existence of multiple solutions that ex-
plain the data equally well, and it does not provide
information on the reliability of a model.

We circumvent this issue by making use of a Monte
Carlo optimisation method based on a Bayesian
statistical framework. This leads to an ensem-
ble of models and to an error estimate for each

model parameter. We use the spectral-element
method for the simulation of 3D wave propagation
through heterogeneous Earth models. An object-
based parametrisation of the Earth, motivated by
the geological structure of western and central Aus-
tralia, enables us to limit the dimensionality of the
model space and to test hypothesis efficiently.

We apply our methodology to the Australian conti-
nental lithosphere. This is intended to answer the
following questions: (1) How good is the resolution
of the tomographic models? (2) Is there reliable in-
formation on density variations in the upper mantle
contained in the waveforms? (3) How robust is the
frequently inferred low-velocity layer around 150 km
depth beneath Proterozoic Australia?
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3 Object-based model construction

a) Definition of four basis functions b; according to the geological structures in the study area in two

layers from 0 to 150km and from 150km to 230km,
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b) 3D Earth models m(x) are constructed as filtered superpositions of weighted basis functions b;, which
take the value one within and zero outside the object. The objects are surrounded by a tomographic

Australia model from Fichtner et al. (2009).
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2 Geological structure

e |dentification of two large-scale (= 1500 km)
structural elements in continental Australia:
the Archean cratons in the west and the pre-
dominantly Proterozoic units in the centre.

e Both Archean and Proterozoic lithosphere have
been imaged consistently in several recent stud-
ies ([1, 10, 4, 5, 2, 3]). Significant differences
between the tomographic images are limited to
length scales below about 1500 km.

e Archean lithosphere is marked by anomalously
high S wave speeds reaching +8 % with respect
to the radial average on a 1500 km length scale.

e Elastic properties of the Proterozoic lithosphere
are strongly depth-dependent with a struc-
tural boundary located at around 150 km
depth.
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Figure: Major surface geologic features in the study area.
Adapted from Myers et al. (1996).

AB - Amadeus Basin, ARB - Arunta Block, BH - Broken Hill Block, CU - Curnamona
Block, GB - Georgina Basin, GC - Gawler Craton, Gl - Georgetown Inlier, KB - Kimberley Block,
LFB - Lachlan Fold Belt, MAB - McArthur Basin, MB - Musgrave Block, MIl - Mount Isa Inlier,
NB - Ngalia Basin, NFB - New England Fold Belt, NVP - Newer Volcanic Province, PB - Pilbara
Block, PCI - Pine Creek Inlier, YB - Yilgarn Block

5 Probabilistic Inversion using the Neighbourhood Algorithm

Variation of P velocity- ovy, S velocity- dvs and
density-perturbations 0p with respect to isotropic
PREM in every object — 12-dimensional model
space.

The posterior probability density (PPD) of a model
space vector m given a set of observed data d is
given by

simld) = py(m)Limld).  (3)

a) Choice of a uniform prior probability density
par(m) within the intervals:

Svg € [0;0.6km s~ 1]
dvp € [0;0.8km s~ 1
5p € [—0.4g cm>;0.4g cm™

N
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(5)
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b) Objective functional: A per-seismogram mis-
fit is given by the L distance between the L1-
normalised waveforms:
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E(ug, u) = |lug/||uollt — w/[lull1]]1, (7)

where uq(t) and u(t) denote the observed and syn-
thetic seismograms. A cumulative misfit £/(m) for
model m is given by a weighted sum over the total
number of recordings.

c) A natural choice for the likelihood function
L(m/|d) in terms of the cumulative misfit thus is:

L(m) = ANV exp [—AE(m)], (8)

where the scale parameter A\ = 1/0 is related to the
variance o of the observed seismograms, reflecting
the noisy nature of the measurements.

d) Model space sampling: We use the Neigh-
bourhood Algorithm (Sambridge, 1999) to sample
the likelihood function quasi-randomly. The result-

ing ensemble of models gives an approximation of
the joint PPD.

4 Data & Forward Modelling
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Observed data:

e primarily sensitive to the regions covered by the
basis functions

e 338 vertical-component seismograms recorded at
30 different stations

Preprocessing:

e two frequency ranges from 60s to 200s and from
130s to 200s, in order to focus the sensitivity on
the depth range of interest

e selection of the surface wave part by manually
tapering each recording

Forward problem: We use a spectral element method as described

by Fichtner et al. (2009) to simulate wave propagation in a spherical ===
section ranging from 7.5° N to 50° S, from 105° E to 160° E and from

the surface to 1461 km in depth.

e 25200 hexahedral elements with a size of approx.
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e approximation of the wavefield by 4th order Lagrange polynomials

collocated at the Gauss-Lobatto-Legendre points

7 Results Il - Posterior Model Covariance

e Nearly uniform marginals for the P wave speeds
indicate that each single parameter does not have
a significant influence.

e [he posterior covariance matrix, however, sug-
gests a rather strong (anti-) correlation between
the P wave speeds.
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Posterior model covariance matrix. Row-order: Archean-
top, -bottom, Proterozoic-top, -bottom.

of Archean top layer vs. Archean bottom layer

4 P wave speed (figure on the left) suggests that either both pa-
rameters take very high or very low values (green contour 60%,
blue contour 90% and red contour 99% confidence)

6 Results | - Posterior Probability Density

After 18 iterations the Neighbourhood Algorithm

ated 5000 models. From the approximate joint PPD marginal
posterior distributions are retrieved by numerical integration. 004 0.04/\

We observe three kinds of distributions:
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Figure: Marginal posterior distributions

e nearly uniform distributions (most P wave speeds)

for top layer S and P wave speeds.

The results confirm

e high S wave speed perturbations (around 0.35
the uppermost 150 km of Archean lithosphere.
confidence values are higher than 0.1 km/s,

o slightly less pronounced S wave speed perturbations in the N
Proterozoic part, with values higher than 0.32 km/s having

a probability of less than 10%.

8 Conclusion & Outlook

We showed that the methodology of a proba-
bilistic full waveform inversion based on a re-
gionalized parameterization works by inverting
surface wave data to infer information about
Australian continental lithosphere. Our results
are consistent with recent tomographic studies.
A future goal may be to relate the models en-
dowed with error bars to results from mineralog-
ical studies.

However, we note that we defer the interpreta-
tion of the density marginals, since we experi-
enced problems possibly due to under-sampling.
We note that these might be circumvented by
using more informative prior distributions and
a different initial tuning of the sampling algo-
rithm.
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Figure: Horizontal slices through the most
likely model in the ensemble.
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