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Introduction

A large part of the uncertainty in global travel time tomog-
raphy is related to the non-uniqueness of the solution. We
suggest to explicitly address the non-uniqueness and take
the null space of the forward operator into account when
analyzing model uncertainties. Deal and Nolet (1996) de-
signed the null space shuttle to exploit components of the
model null space, in combination with physical a priori in-
formation, to enhance the corresponding tomographic im-
age (Deal et al., 1999). We generalize this technique and
use the null space shuttle to investigate the uncertainties
in classical travel time tomographic models. As an exam-
ple we use the P-wave model MIT-P08 (Li et al., 2008), since
this model is based on a more comprehensive data set than
most other P wave models.

Null space shuttle

Consider a test model mt that may not explain the data. This
model can be seen as the sum of the components lying in the
range and in the null space of the forward operator, so that

mt = mrange
t + mnull

t (1)

mnull
t has no effect on the data misfit and can be found using

the null space shuttle. Defining dt = Gmt with dt the syn-
thetic data vector corresponding to mt and G the forward
operator, gives

dt = Gmrange
t (2)

as Gmnull
t = 0̄ by definition. Solving the inverse problem

for mt in Eq. 2 yields mrange
t and it is trivial to obtain mnull

t
via Eq. 1. Due to the necessary regularization the solution
to our inverse problem, and most others, is a compromise

between the minimum norm and the least-squares solution.
Therefore, we only get an estimate:

m̃range
t = Ldt = Rmt (3)

with L the inverse operator corresponding to the LSQR al-
gorithm, R the resolution operator and m̃range

t 6= mrange
t ,

although they are close. We define a new solution

m̃new = m̃orig + αm̃null
t (4)

with m̃orig the original solution and α a scaling factor. Since
Gm̃null

t is not exactly zero, the new solution in Eq. 4 cor-
responds to a slightly different data misfit than the original
solution. However, effects on the data misfit are small com-
pared to presumed data uncertainties.

The null space shuttle is straightforward to implement:

Invert syn-
thetic data

Calculate
synthetic

data
Test model

Calculate
null space
component

Add to
original
model

New model, comparable data misfit
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Data & their uncertainties

We use the same data set as Li et al. (2008), comprising
millions of travel time residuals with respect to travel
times computed from ak135. Available estimates of the
random and systematic errors range from 0.3 s to 1.0 s for
the ISC data. We use composite ray arguments to obtain a
conservative estimate for the data uncertainty of 0.1 s, which
we use as a tolerance on the data misfit.

RMS of data vector d = 1.92 s
RMS of data misfit Gmorig − d = 1.46 s

Results

We follow the inversion procedure by (Li et al., 2008). All
solutions were obtained after 100 iterations of the LSQR
algorithm. Fig. 1 shows the RMS data misfit versus RMS
norm of m̃new (slowness parameters only) for new solutions
by setting mt = m̃orig in Eq. 4. By changing α, we are able
to minimize the norm of the solution or improve the data
misfit. A large range of solutions exists that fits the data
within a realistic average data uncertainty.

Fig. 1: RMS data misfit vs. RMS model norm.
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Conclusions

The large range in model parameters (Fig. 1, 3) indicates
that constraints from the travel time data on amplitude are
lacking and prohibit robust inferences on thermochemical
variations in the Earth from such models alone. While
the lack of constraint on the amplitudes is qualitatively
mentioned in many studies, the null space shuttle can put
quantitative bounds on the amplitude range. However,
any detailed interpretation of travel time tomography in-
volving amplitudes needs to address the data uncertainty
in much greater detail.

We find that independent of the regularization the short-
wavelength structures in the model are mostly not con-
strained by the data. We conclude that ’high-resolution’
travel time tomography provides useful insight into the
structure of the Earth’s mantle, but does not necessarily
provide robust images on the length scale of the indi-
vidual structures. Therefore, physical interpretations of
velocity perturbations in the tomographic image should
always be accompanied by additional information from
other sources, such as studies of plate reconstructions, Be-
nioff zones, etc.

Results — Range of model parameters

Fig. 2: Original solution MIT-P08. Fig. 3: Range of model parameters (∆m in Fig. 1).
Note the different colour scale.

Results — Minimum-norm model

For the chosen tolerance of the data mis-
fit of 0.1 s, the model in Fig. 4 represents
the model of velocity perturbations with
the smallest norm required by the data
(for the chosen regularization).

The differences between the models are
mainly for relatively short wavelengths.
The data do not constrain all of the
model parameters at the high resolu-
tion of the model parameterization and
therefore a large part of the short wave-
length structure is introduced by the reg-
ularization, i.e. resides in the model null
space.

Fig. 4: Minimum-norm model.


