Transport of bacteriophage PRD1 through saturated clean sand columns as a function of Calcium concentration

 \bullet To investigate effects of Ca^{2+}-concentration on virus attachment, detachment and inactivation in columns with saturated, clean quartz sand and to obtain empirical formulas for those effects.

Material and Methods

•50-cm saturated columns with clean quartz sand

•Calcium concentrations representative of natural conditions:

0, 20, 60, 120 mg/l

•Conservative model virus: Bacteriophage PRD1

• pH=7

Ionic strength= 10 mM

from CaCl₂+NaCl salts in all columns

- Quartz sand with average diameter of 0.4mm
- Porosity=0.36
- Average velocity 2m/day

Figure 2 Attachment rate coefficient k_{att} and sticking efficiency a as a function of $[\text{Ca}^{2+}].$

Observations: blue dots; Regression line: red line; 95% prediction interval: light blue area; Top: Empirical formula and $R^2. The intercepts are not significantly different from zero.$

Conclusions

•Maximum breakthrough concentrations of PRD1 decrease with increasing [Ca²⁺]: increasing attachment.

• Attachment of PRD1 is higher in the presence of Ca²⁺ than in Ca²⁺ free buffer with the same ionic strength.

• Switching from 60 and 120 mg/l to Ca²⁺-free buffer with ionic strength of 1mM leads to release of retained PRD1 phage particles.

 \bullet Virus attachment (k_{att} and a) increases significantly and linearly with increasing [Ca^{2+}] in the range of 0-120 Ca^{2+} mg/l.

• Empirical formulas for virus attachment (k_{att} and α) as a function of [Ca²⁺] have become available.

• Virus detachment and inactivation of attached virus particles are not found to be significantly, affected by [Ca²⁺].

• The applicability of the empirical formulas at field scale requires further investigation.

