Impact of ice on intertidal mussel beds

Jasper Donker, Maarten van der Vegt and Piet Hoekstra
Department of Physical Geography, Utrecht University

Project Mosselwad is funded by the Wadden Fund

Background
- After cold winters losses in mussel areal are observed.
- Drift tracks are found in mussel beds (a).
- Small holes are found inside the bed (a,b).
- Drift ice found with mussels frozen into it (b).
- This suggests 2 mechanisms play a role, Ice drift (a) and bouyancy(b).

Goal: determine which mechanism is most important, and which areas are most vulnerable

Mechanisms

a) Drift
- Ice forced over mussel bed
- Forced by wind and ice
Leads to:
- Damage to higher areas
- Mussels are dispalced
- Drift tracks through bed

b) Bouyancy
During low water
- Water ponds freeze
During Flood
- Ice with mussels is picked up
Leads to:
- Damage to isolated lower areas
- Mussels in ice
- Small holes in bed

Method
Determine which mechanism results in the most damage, and which areas are most exposed.
- Constant monitoring of bed to determine when losses occured.
- Camera system
- During winter 2011/2012
- Determine height variations
 - 3D laserscanner
 - DEM before measurements
 - Multiple DEMs after ice period.

Also recovery of mussel bed from ice forcing is recorded.

Results

Before

After

Difference

Conclusions
- Higher parts of the mussel bed are hit by ice drag.
- Mussel attachment strong enough to withstand bouyancy force.
- Ice drift mechanism causes most damage to mussel bed
- Mussel beds with more height variation more exposed to ice drag.