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Modeling the glacio-hydrological response of a Himalayan watershed to climate change 
using a physically-oriented distributed model: sources of model uncertainty 

2. Project aims 
• Identify the sources of uncertainty that affect the reliability of projections about future water availability in 
high-mountain Asia. 
• Assess how these model uncertainties vary in space and in time. 
• Identify individual model parameters and variables that mostly affect uncertainty in simulated streamflow. 
• Use these insights to answer question where resources should be allocated for observational network design 
and how field experiments should be designed, in order to efficiently reduce model uncertainty.  

Fig. 1: Map of the Hunza River Basin and the 5 sub-regions, for which model results 
are evaluated separately. The area of the entire catchment is about 13'715 km2 while 
approximately 26% of the basin is covered by glaciers. 

Fig. 2: Simulated and measured runoff of the calibration period. 

1. Introduction 
Physically-oriented modeling of glacio-hydrological processes in the Himalaya is affected by uncertainties due to 
the complexity of the process spatial variations and low data availability. We use the glacio-hydrological model 
TOPKAPI-ETH to simulate glacier mass balances and runoff from the Hunza River Basin, Karakoram, Northern 
Areas of Pakistan. Three key sources of model uncertainty in future runoff projections are compared: model 
parameters, climate projections and natural climate variability. The model performance is discussed by comparing 
model outputs to recent observations about glacier mass balances in the area 

4. Model and model calibration 
TOPKAPI-ETH is a physically-oriented, distributed glacio-hydrological model. It has been successfully applied to 
simulate streamflow from high-elevation catchments (e.g. Ragettli & Pellicciotti, 2012). 
The 34 parameters of the model are estimated using values given in the literature and derived from scarcely 
available observed data, using 3 years of measured runoff (Fig. 2). 
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Fig. 4: Information content of selected parameters (a), 
variables (b) and water balance components (c), for runoff       
simulated for the present (2001-2010) and future (2041-2050). 

Fig. 3: The maximum difference between pairs of CDFs reflects the 
information content of a parameter to simulate runoff of a specific 
period. Each CDF represents parameter sets resulting in higher and 
lower mean runoff per decade, than the average runoff of all 
parameter sets together. The figure shows CDFs of selected 
parameters: precipitation gradient (Pgrad), temperature gradient 
(Tgrad) and albedo of fresh snow (α1). 

5.1 Parametric uncertainty 5.2 Climate model uncertainty 5.3 Natural climate variability 

6. Model performance 

1.) Considering ±10% parameter uncertainty, we generate 1000 random parameter 
sets using Sobols’ quasi-random number generator. 
2.) We run TOPKAPI-ETH for 50 years, using the 1000 parameter sets and one 
time series of stochastically simulated precipitation and temperature. 
3.)  We explore the capacity of individual parameters to explain the resulting 
uncertainty in simulated runoff using a regional sensitivity analysis approach (Fig. 
3). The information content of variables is assessed using the same 1000 model 
realizations. This allows to analyze how individual model components (and 
intermediate model outputs) affect overall model uncertainty given the ±10% 
parameter uncertainty. 

1.)  Three GCMs are used: CGCM3, CM2 and MIROC3, considering the 1AB 
emission scenario and monthly outputs.  
2.) GCM outputs are downscaled to daily temporal resolution at the station 
locations using a stochastic approach, providing an ensemble of future scenarios.  
3.) For each GCM we generate 100 stochastic series of precipitation and 
temperature data  of 10-year length each, for each decade until 2050. 
4.) We run TOPKAPI-ETH for 50 years, using each of the 3x100 stochastic 
series of input data and the calibrated parameter set.  
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2001-2010

2011-2020

2021-2030

2031-2040

2041-2050

  Hunza Ziarat Kunjerab Naltar  Hisper Shimshal 
Runoff (mm/y) 650.9 ±25.0 500.8 174.1 835.9 873.9 714.7 

Temp. (°C) -5.6 ±0.1 -4.5 -6.7 -2.9 -7.4 -8.8 
Snow (mm/y) 590.0 ±39.1 156.1 121.8 667.4 907.2 987.6 
Rain (mm/y) 147.8 ±11.8 58.6 43.8 249.7 158.3 130.8 
GMB (m/y) -0.07 ±0.13 -1.82 -0.31 0.48 0.45 1.12 
ELA (m) 4739 ±30 5327 5143 4502 4496 4489 
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Fig. 5: Future runoff and runoff composition projected by 
TOPKAPI-ETH simulated using three stochastically downscaled 
GCMs (CGCM3, CM2 and MIROC3). Error bars represent the 
standard deviation in mean annual values, reflecting the 
stochastic nature of the climate input. 

The stochastic downscaling approach accounts for the natural variability of climate by preserving the 
observed statistical properties of precipitation and temperature. In turn, the effect of the stochastic nature of 
these variables can be taken into account when simulating the hydrological response of a catchment. 

Fig. 6: Annual cycle of monthly precipitation and temperature measured at the three 
meteorological stations (1996-2009) and generated by the stochastic approach, for 
the same period. Error bars represent the standard deviation in monthly mean 
values. 

Table 1: Mean values of simulated runoff and selected variables for the Hunza River 
Basin as well as for 3 sub-regions. Shown are the results of simulations forced with 
optimal parameters and generated climate data for the control period (2001-2010). 

The model performance is discussed by comparing model outputs to recent observations about glacier 
evolution in the area by geodetic mass balance observations, satellite images and direct measurement.  In 
order to take into account the uncertainty due to the lack of adequate locally observed climate data, model 
performance is analyzed for each sub-region (Fig. 1) separately.  
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7. Conclusions 
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7. Discussion and Conclusions 
• The main effects of the three sources of uncertainty (sections 5.1-5.3) on 
simulated runoff can be compared quantitatively. Fig. 7 shows that the effect of 
different sources is subject to strong variability in time and in space: 
 The effect of ±10% parametric uncertainty often exceeds the effect of other 
sources of uncertainty. Since there is no evidence that parameters are stable in 
time and in space, parametric uncertainty has to be taken into account in future 
projections. 
The effect of the climate model uncertainty increases with time. For sound 
projections of future runoff and glacier response, GCMs outputs should be used 
in an ensemble manner. 
 The effect of the stochastic uncertainty in meteorological input cannot be 
neglected and is especially important for sub-regions with an important fraction of 
total precipitation falling as rain (especially Naltar, see Table 1). 

Fig. 7: Uncertainty in simulated runoff: 95% confidence interval in model outputs 
resulting from ±10% parametric uncertainty, from using stochastic timeseries of 
precipitation and temperature (reflecting the natural inter-annual climate variability) 
and the maximum difference in model outputs resulting from the climate model 
uncertainty (running the model with three downscaled GCMs). 

• Total mass of glaciers in the Hunza River Basin is more or less stationary 
during the control period (Table 1). This is in accordance with recent studies  
(Hewitt 2005, Scherler et al. 2011, Gardelle et al., 2012; Kääb et al., 2012) and is 
an indication that the used climatic input might represent adequately the local 
climate. Likely, precipitation in the Shimshal basin is overestimated. 
• The approach does not take into account interactions between sources of 
uncertainty and thus provides only estimates about the main effects of individual 
sources. 
• In order to reduce most efficiently uncertainty in simulated runoff, the 
temperature distribution should be monitored in the field (Fig. 4a). The analysis 
of information content (IC) is an efficient tool to screen many-parametered 
models for model components that are disproportionately affected by parameter 
uncertainty.  The method can also be applied to calculate IC of intermediate 
model outputs at grid-cell level, and thus to estimate the distribution of IC both 
in time and in space. 

Presentation Number: C23A-0645  
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