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Introduction

We use artificial neural networks to find posterior
distributions on point source parameters from
seismic waveform data in a Bayesian framework.

As a first step we extract information from static
displacement measurements, as provided by

GPS instruments or INSAR images. We aim to
investigate if static displacements, measured by
GPS instruments, can contribute information to
better constrain early source estimates.

Our method might be applicable in an earth-

quake early warning (EEW) context, where it
could provide source parameter estimates to-
gether with realistic uncertainty bounds rapidly.
Assuming that a trained network is available
an inversion takes only a few ms on a desktop
computer.

Methodology

The solution to the general inverse problem can
be written as a posterior probability distribution
(Tarantola, 2005)

σM (m|dobs) = kρ(m)L(m), (1)

with the prior distribution ρM (m) and likelihood
function L(m) and m ∈ M denoting a member
of the model space. We directly model marginal
distributions

P (mi) =
∫

σM (m)
∏

mk 6=mi

dmk (2)

using Mixture Density Networks (MDNs).
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Figure 1: Mixture density networks approximate the inverse
mapping and yield posterior distributions.

A mixture density network approximates the in-
verse mapping from data space D into model

space M using an adaptive, weighted sum of
non-linear basis functions. The network weights
are optimized during the training stage, which
requires a large number of example input-output
pairs. See also the info-box Mixture Density Net-
works.

Data vectors d are formed by concatenating
the x- and y- components of the static displace-
ment at different stations. We add white Gaus-
sian noise with a standard deviation of σ = 1
mm to simulate the presence of ambient noise,
measurement- and modeling-errors.

Static Displacement Measurements

Static displacements are the zero-frequency-
limit solution to the seismic wave equation, and
as such only detectable by long-period displace-
ment instruments such as GPS stations. The
use of GPS data for moment-tensor point source
inversions is subject of ongoing research (e.g.
O’Toole et al., 2012a; Melgar et al., 2012) and
may have potential for earthquake early warning
applications.
We calculate coseismic displacements in a lay-
ered, isotropic, elastic half-space using a prop-
agator matrix method developed by O’Toole and
Woodhouse (2011).

Outlook & Conclusion

A probabilistic neural network inversion can act
as a powerful tool to analyze complex non-linear
inverse mappings, including realistic uncertainty
estimates and trade-offs. Computational de-
mands are low, once a trained network is avail-

able, which makes the method suitable for EEW
purposes.
Our preliminary results suggest, that static dis-
placement data alone does not constrain source
depth and magnitude better than seismic data.

There might be potential, however, in joint inver-
sions of seismic and co-seismic near-field data,
which we can readily incorporate into a neural
network inversion due to the flexible treatment of
input data.

Prior Source Distribution
We draw 50.000 double-couple sources of ran-
dom magnitude and orientation from the prior
distribution (Figure 2).
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Figure 2: A set of random double-couple sources drawn
from the prior. Triangles indicate positions of virtual (black)
and California Real Time Network (red) receivers.

Results, Uncertainties and Trade-offs

We trained networks on the 6 moment tensor
components, centroid location, strike, dip, rake
and scalar moment M0. The performance of the
trained networks is assessed by presenting an

independent set of test examples to the network.
Figure 3 shows test set predictions for a virtual
network of 80 stations (black triangles in Fig. 2).

Figure 3: Every dot corresponds to an example of the test set. Horizontal axis: position of the maximum posterior Gaussian
kernel, vertical axis: Desired target value. color axis: width of the maximum posterior kernel. Ideally the plots would show a
straight diagonal. The plot on the bottom right indicates that M0 for extreme dip angles is systematically underestimated.
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Figure 4: Left: 1-D marginal distributions for an example
from the test set. The prior is shown in green, the vertical
line denotes the target value. Right: 2-D marginals. Top:
P (M0, dip) for two different examples, Bottom: P (Mrθ, z) and
P (Mrθ, lat)



A More Realistic Example - The 2010 El Mayor-Cucapah Event

Networks are trained using 37 stations of the
CRTN GPS network (red triangles in Figure 2).
Figure 11 shows the test set performance,

Subsequently we presented real observations
for the 2010, Mw 7.2 El Mayor-Cucapah event to
the trained network.
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Figure 5: As opposed to Figure 3 the scatter is slightly broader, due to the uneven station distribution. Also note that sources
that are further away from the GPS network (smaller latitude) are predicted less well.
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Figure 6: 1-D marginal distributions for the same test set
example as in Figure 4. Distributions are in general broader
and less pronounced due to the uneven station distribution.

Figure 7: Preliminary results for the 2010 Mw 7.2 El Mayor-
Cucapah event. Black vertical lines denote the position of the
CMT catalogue solution.
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Figure 8: 100 Samples taken from the posterior distribu-
tion under the assumption of independent model parameters.
Other solutions plotted are gCMT (green), a solution by Mel-
gar et al. (2012) (red) and by O’Toole et al. (2012b) (black).

Mixture Density Networks

Neural networks are function approximators
able to learn by example a general class of
mappings to arbitrary accuracy. They consist of
multiple layers of connected computational units
(neurons), which apply a non-linear activation
function g(·) to their input.

Neuron-inputs are weighted sums over the
inbound connections, such that the output of a
two-layer, feed-forward network reads

yk (x) =
H∑

h=1

whkg

(
I∑

i=1

wihxi

)
, (3)

where H and I denote the number of hidden
and input nodes, respectively, and w is a vector
of network weights.

The connection weights w of a given net-
work are optimized during the training stage.
A set of examples {xn} for which the desired
outputs (targets) {tn} are known is presented
and network weights are updated iteratively to
minimize an error function. Weight updates are
determined using the L-BFGS quasi-Newton
method (Liu and Nocedal, 1989), while partial
derivatives are efficiently evaluated using error
backpropagation.

Mixture-Density-Networks (MDNs) out-
put the parameters of a Gaussian mixture
model, thereby directly parametrizing poste-
rior marginal probability distributions. This is
achieved by minimizing the following error func-
tion based on the maximum likelihood principle

E = −
∑

n

ln


M∑

j=1

αj(xn)Φj(tn|xn)

 , (4)

where αj are mixing coefficients for the Gaus-
sian kernels

Φj(tn|xn) ∝ exp

{
−||t − µj(x)||2

2σ2
j

}
(5)

with means µj and variances σ2
j .

An MDN can thus approximate any arbi-
trary conditional pdf as a linear combination of
Gaussian kernels (Bishop, 1995).

Preview: Inversion of Tele-Seismic Body Waves
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Figure 9: The box shows the prior source distribution, that
has been centered around a 2009 Papua New Guinea event
from the global CMT catalogue. Synthetic seismograms at
the stations denoted by red triangles were generated using
normal mode summation in a spherically symmetric Earth
model.

Figure 10: Test set performance for a network trained
on tele-seismic body-waves. Network input vectors d are
formed by concatenating long-period vertical component
seismograms at several stations.

Figure 11: Preliminary results for the 2009 Papua New
Guinea event. The black vertical line denotes the catalogue
solution, the prior distributions are shown in green.
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