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Summary
Many problems in geomorphology require researchers to identify and catalogue
occurrences of some particular class of feature. This identification may be
straightforward ‘by eye’, but is typically difficult to automate, since simple math-
ematical models for the feature fail to adequately account for natural variations
between examples.

As an example, we consider the task of identifying seamounts (isolated bathy-
metric highs of volcanic origin) from global bathymetric data. We propose a new
approach to this problem, using neural networks to assimilate the topographic
characteristics of hand-picked seamounts. This may then be used to assess
whether a particular locations, and thus the network can be used to extrapolate
the selection across a regional or global dataset.

Neural networks
Neural networks allow complex mathematical relationships to be discovered and modelled.
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. Individual neurons implement simple map-
pings: u → f(w · u + b) where w repre-
sents some set of tunable weights, and b a
bias.

. By connecting many neurons together, ar-
bitrarily complex mappings x → y may be
represented.

. The mapping is governed by the (indepen-
dent) weights and biases associated with
each neuron.

. Given a set of example inputs
{x1,x2, . . . ,xN} and corresponding de-
sired outputs, {y1,y2, . . . ,yN}, it is possi-
ble to set up an optimisation problem to find
values for the tunable parameters. This is
often called training the network. No other
knowledge of the relationship between the
{xi} and {yi} is required.

. Once the network has been trained, it may
be used to predict y for previously unseen
input vectors, x.

The autoencoder
An autoencoder is a particular class of neural network (see schematic, right), designed to find
low-dimensional representations of complex datasets (Hinton & Salukhutdinov, 2006).

. Can be considered as a connected
encoder-decoder pair;

. Encoder layers have an output vector of
lower dimension than their inputs;

. Decoder layers have an output vector of
higher dimension than their inputs;

. The network is trained so that the top-level
decoder layer produces a reconstruction
(s′i) as close as possible to the input data
(si), for some training set {s1, s2, . . . , sN}:
we minimise

E =
∑
i

|s′i − si|
2

. The encoding process forces the network
to identify the characteristic features of the
training set, and discard finer details;

. If a new example, sn is ‘similar’ to those in
the training set, the network will be able to
represent it, and En = |s′n − sn|2 will be
small;

. If the new example is not similar to those in
the training set, En will be large;

. The autoencoder can therefore be used to
assess whether new examples are compa-
rable with those in the training set (as dis-
cussed in Valentine & Trampert, 2012).

From Valentine & Trampert (2012)

Data: ‘patches’ of seafloor
To search for seamounts, we systematically test ‘patches’ (spatial windows) of seafloor
bathymetry to assess whether they are likely to be centred on a seamount.

. Data is extracted from the global bathymetry
dataset of Smith & Sandwell (1997, v.14.1);

. Each patch is 150 km×150 km, sampled on
a 64×64 grid;

. Raw data is projected using a Lambert Az-
imuthal projection, filtered using a tenth-
order Butterworth low-pass filter with fre-
quency cutoff 2.5×Nyquist’s frequency, and

then resampled onto the 64×64 grid;
. The edges of the patch are downweighted

relative to the centre, with scale factor
α(r) = 1− ar2;

. Data extraction is the most computation-
ally expensive part of the process, requir-
ing ∼1 s per patch—although well-suited to
a distributed implementation.

(a) (b) (c) (d) 

E=0.9 

E=7.3 

Left: Examples of patches centred on
seamounts. From left to right: (a) raw data—
150 km×150 km region extracted from global
bathymetry; (b) autoencoder inputs—rescaled,
weighted bathymetry; (c) inputs reconstructed
by trained autoencoder; (d) difference between
inputs and outputs.

To construct a training set, we use the seamount catalogue developed by Kim & Wessel (2011)
in conjunction with visual inspection to assemble a collection of 1000 seamount-centred patches.
This is then used to train an autoencoder that represents 4096-element input data vectors as
64-element encodings.

A systematic search for seamounts
The trained autoencoder can represent previously unseen patches containing seamount-like
structures; however, non-seamount topography cannot be represented.

E=7.4 

E=1.9 

Right: Attempting to encode and reconstruct
patches that are not obviously centred on
seamounts leads to large reconstruction errors.

Left: Seamount-like patches can be encoded
and reconstructed by the trained network with
relatively little loss of information: the differ-
ence between inputs and outputs is small.

E=25.7 

E=22.7 

We can use this to quantify how well a given site matches the collection of seamounts used
during network training. At each point on a 2D grid, we extract a patch, encode and reconstruct
it, and compute the reconstruction error. We therefore obtain a grid of reconstruction error, and
low values are assumed to correspond to seamounts.

Example — Pacific Ocean
To demonstrate the
method, we apply it
to a 10◦×10◦ re-
gion in the Pacific
Ocean (as outlined
on map, left). The
Sandell & Smith 1-
minute bathymetry for
the region is shown,
right .

Below : A pre-existing catalogue: seamounts
identified by Kim & Wessel (2011). Note
that this catalogue is derived from ver-
tical gravity gradient (VGG) data, and
this may lead to some discrepancy with
seamounts identifiable in bathymetric data.
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−20˚ −20˚ Our method involves testing each point on the
1-minute bathymetric grid to assess the likeli-
hood that it lies at the centre of a seamount.

. We extract a patch centred on each point
in the grid, encode and reconstruct this us-
ing the trained network, and compute the re-
construction error;

. The resulting grid of reconstruction error
can be seen below left ; where this is low
(yellow/red colours), the network is able to
accurately represent local bathymetry;

. Since the network is trained only on
seamount patches, low reconstruction error
is indicative of seamount-like topography;

. Below right the same error grid is shown
as contours overlain on bathymetry.
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In general, the contours of low reconstruction error correlate well with the occurrence of visible
seamounts in the bathymetric data. In principle, we can locate discrete seamounts by identifying
local minima in the error surface. However, doing so effectively presents some challenges: see
later panel.


