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Example — Atlantic Ocean
We repeat the analysis for a 10◦×10◦ re-
gion in the Atlantic Ocean, including part
of the spreading ridge (left). Conventional
seamount-detection algorithms have typically
found the Atlantic challenging, recording high
false-positive rates due to ‘seafloor roughness’.
Topography of the region is shown below left ;
seamounts identified by Kim & Wessel (2011)
are shown below right .
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Grid of reconstruction error computed by au-
toencoder is shown above left , using identi-
cal colour palette as for the Pacific (left). Con-

tours of this error surface are shown overlain on
bathymetry above right . See Pacific example
for further details.

Picking discrete seamounts: current challenges

For some applications, the error surfaces as
shown in the two examples may be useful in
their own right. However, in many cases it
is desirable to reduce this to a set of discrete
seamount locations.

. Essentially, this involves identifying the loca-
tions of minima in the error surface;

. It is unrealistic to expect any automated al-
gorithm to perform ‘perfectly’—even experts
picking ‘by hand’ are unlikely to make iden-
tical decisions;

. There will always be a tradeoff between
numbers of ‘false positives’ (picks placed
at non-seamount locations) and ‘missed
seamounts’. The correct balance between
the two may differ between applications;

Right: Results from picking all minima inside
the E=30 contour for Pacific (upper) and At-
lantic (lower) regions (red crosses).

. Most visible seamounts are picked (78%
match with handpicked seamounts in Pa-
cific; 79% Atlantic)—but there are signifi-
cant numbers of false positives (52% of au-
tomatic picks do not correspond to a hand-
picked seamount in Pacific; 60% Atlantic);

. Picking inside a lower contour would reduce
false positives at expense of ‘good’ identifi-
cations;

. Many false positives appear to be due to
small depressions on the sides of large min-
ima (e.g. Pacific at 141◦W 24◦S);

Can we improve results by eliminating these
depressions?

. First approach: spatial (frequency-domain)
filtering
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Above; above right: seamount identifications
by picking all minima inside the E=30 con-
tour for error grids filtered using a second-
order Butterworth low-pass filter, wavelength
30 km. Whilst many false positives are elim-
inated, some ‘desirable’ seamounts are lost.
(Match with handpicked: 71% Pac., 71% Atl.;
False positives: 43% Pac., 52% Atl.)

. Second approach: removal of picks with low
’energy barrier’ to adjacent minimum
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Below left; below : seamount identifications
by picking all minima within the E=30 contour,
discarding any that have an energy barrier of
∆E=2 or less from an adjacent minimum.
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This approach leads to significantly better re-
sults in the Pacific: 71% match to handpicked,
33% false positive. However, Atlantic results

are slightly worse: 66% match, 53% false posi-
tive. Different choices for parameters may lead
to some improvement on these figures.

Outlook
Neural network–based methods show promise for use in constructing large-scale
catalogues and analyses of topographic data. The main advantage of this ap-
proach is that the user only has to assemble a set of examples of the feature of
interest; they need not develop a mathematical description of it.

Here, we have used the encoder-decoder network as a ‘filter’ for identifying
seamount-like topography. It may be possible to gain further insight by analysing
the encodings themselves—what aspects of topography is the network sensitive
to? Do different classes of seamount cluster in the encoding domain?

Within the neural network framework, it is straightforward to incorporate multiple
datasets simultaneously. This may allow different sensitivities to be exploited,
leading to better results: for example, gravity data may be used in conjunction
with the topography when searching for seamounts.
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