Species specific impacts of temperature and seawater Mg/Ca on foraminiferal Mg/Ca

I.E.Y. van Dijk¹, L.J. De Nooijer¹, T. Toyofuku², G.J. Reichart^{1,3}

Utrecht University, Faculty of Biogeosciences, Utrecht, The Netherlands

³Alfred Wegener Institute, Bremerhaven, Germany

Introduction

Variations in Mg/Ca of foraminiferal calcite (Mg/Ca_{calcite}) reflect changes in environmental parameters, particularly temperature and seawater Mg/Ca (Mg/Ca_{sw})(Fig. 1). This means that $Mg/Ca_{coloite}$ can only be used to reconstruct seawater temperature when Mg/Ca_{sw} is known.

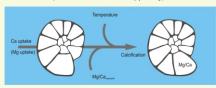


Figure 1. Mg incoporation in a foraminifera, influenced by Mg/Ca, wand temperature

The impact of Mg/Ca_{sw} is negligible when reconstructing paleotemperatures over timescales within ~1 Ma, due to the long oceanic residence times of Mg²⁺ and Ca²⁺. However, when reconstructing seawater temperatures on longer timescales, T reconstructions have to be corrected for Mg/Ca_w (Fig. 2).

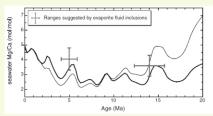


Figure 2. The seawater Mg/Ca ratio over the past 20 million years, as suggested by evaporite (crosses) and carbonate sediment (curves) fluid inclusions (Fantle and DePaolo, 2006).

Incorporation of Mg into foraminiferal calcite (Mg/Ca $_{colcite}$) is expressed as the partition coefficient:

$$D_{Mg} = (Mg/Ca_{calcite})/(Mg/Ca_{sw})$$

 D_{max} in turn may vary with temperature and preliminary data shows that D_{max} is also impacted by Mg/Ca,...

Objectives

The use of low- and Mg-calcite species from the same age allows reconstruction of both Mg/Ca_{ss} and temperature. To do this, it is necessary to investigate the dependency of temperature and Mg/Ca_{cu} on D_{Ma}.

Conclusions

Preliminary results suggest that for Quinqueloculina sp., Mg/Ca, and T impact D_{Ma} independently.

Further research suggestions

Further research can use this relationship in combination with a species with a contrasting biologically controlled Mg incorporation (e.g., the low Mgproducer Elphidium sp.) to resolve Mg/Ca_{sw} changes in deep geological time, since the relative difference reflects temperature and Mg/Ca_{ss}. This approach takes advantage of the species-specific fractionation between Mg²⁺ and Ca²⁺.

Cosmochimica Acta 70, 3883-3904

hemistry records the marine environment. Geology 31, 355-358. Hemistry records the marine environment. Geology 31, 355-358. Fantle, M.S., and DePaolo, D.J. (2006) Sr isotopes and pore fluid chemistry in carbonate sediment of the Ontong Java Plateau: Calcite recrystallization rates and evidence for rapid rise in seawater Mg over the last 10 million years. Geochemica et

Reichart, G.J., Jorissen, F., Anschutz, P., Mason, P.R.D. (2003) Single foraminiferal test

Methods

Specimens of Quinqueloculina sp. were sampled in Tokyo bay, Japan and were cultured at a combination of different temperatures (17, 22 and 27 °C) and Mg/Ca_{sw} (2, 3.5 and 5 mol/mol). Mg/Ca_{colcite} was determined using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS; Reichart et al., 2003) and expressed as elemental concentrations (Fig. 3).

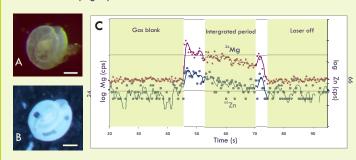


Figure 3. Quinqueloculina sp. (scalebar = 100 µm) during culturing (a) and after cleaning and laser ablation (b). Results from laser ablation (c) with ™Mg and ™Zn in cps and indication of the integrated

Preliminary results

With increasing Mg/Ca_{sw} as well as with increasing temperature, $Mg/Ca_{colcite}$ increases (Fig. 4). The different temperature relations appear to have a similar slope. Although it is suggested that D_{ma} may vary with temperature, this appears to be not the case for this species.

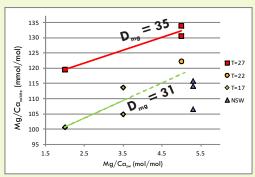


Figure 4. Mg/Ca $_{\tiny{colicite}}$ of cultured Quinqueloculina sp. Upper: Mg/Ca $_{\tiny{colicite}}$ vs. Mg/Ca $_{\tiny{sw}}$ with D $_{\tiny{mg}}$. Lower: Mg/Ca_{coldie} vs. temperature. 'NSW' represents chambers grown at natural seawater conditions, and reflect Mg/Ca, ≈5.3 and T≈15°C.