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 Introduction
Although it is commonly accepted that the 
Earth is compressible, this effect is neglect-
ed in most numerical models. For purely 
viscous rheologies, this is justified, since 
the bulk viscosity of the Earth is negligi-
ble. However, for visco-elastic rheologies, 
the elastic deformation allows volumetric 
changes. To study the effect of elastic com-
pressibility, a well-defined benchmark in 
fluid mechanics is used: a sinking cylinder 
in a homogenous fluid. An analytical solu-
tion exists in the case of an incompressible 
purely viscous fluid and is compared to our 
visco-elastic solution.

a

2R

Hg

x

y

Figure 1: Physical sketch of the model. In 
the reference model H=25cm; R=0.5cm; 
a=0.25cm. After:DeFranco (2008)

Model Setup
A rigid cylinder is placed midway in a ho-
mogeneous visco-elastic fluid. The fluid is 
bounded by impermeable walls. The tank is 
25cm high and 1cm wide. The cylinder is 
placed at a distance of 1,5cm from the top 
of the domain. A sketch is given in Fig. 1 
and the model parameters in Table 1.
This setup is solved using the lagrangian 
finite element package G-TECTON con-
sisting of both triangular and quadrilateral 
elements. A remeshing is used to avoid nu-
merical errors due to high deformations. 

Benchmark description
In the analytical benchmark, the steady 
state Stokes equations are solved for a rigid 
cylinder moving with a constant velocity 
through a homogeneous fluid between two 
parallel impermeable walls. The fluid ex-
tends infinitely in the direction of motion.
The resulting flow field (Fig. 2) is only non-
uniform in a small confined region around 
the cylinder (~2 radius width). 
From the flow field, the dimensionless drag-
force is calculated. In our models, it is as-
sumed that when the cylinder is in steady 
state, the dragforce balances the buoyancy 
force. This implies that the fluid is not self-
gravitating.

Figure 2: 
Streamfunction 
of the bench-
mark around a 
fixed cylinder 
(Liu et. al, 1998) 
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Steady state solution: Champmartin (2007)
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	Figure 3: Velocity field after 5 sec-
onds. The cylinder has a velocity 
close to steady state. Horizontal 
velocity on the left and vertical 
velocity on the right. Different 
scale bars are used for the two 
components.

Figure 6: Velocity profiles for different Poisson ratios. A Poisson ratio of 0.5 represents an 
incompressible flow. Each model run reaches an almost constant velocity at the end of the 
run. The highest Poisson ratios are in good agreement with the analytical solution. Due to 
elastic effects, the initial velocity is large and it monotonically decreasing with time.
For Earth-like poisson ratios (i.e. n=0.3) the difference with the incompressible (analyti-
cal) solution is 40%. 
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Figure 4: Time evolution of the vertical 
velocity at x=0.5cm. For near steady state 
velocities, the vertical motion of the fluid 
approaches a linear profile. The gradient is 
dependent on the distance between the cyl-
inder and the domain boundaries. Thus, as 
long as the distance travelled by the cylin-
der is much smaller than the distance be-
tween the cylinder and the boundary, the 
cylinder approaches a steady state velocity.

Analysis
In the incompressible solution, the downward mo-
tion of the cylinder is balanced by the upward flow 
around the cylinder. In the compressible solu-
tion, a part of the motion of the cylinder is ac-
comodated by the compressibility of the fluid 
below. Thus the upward motion is smaller and 
the dragforce is decreased. Compressibility in-
creases therefore the sinking velocity of the 
cylinder.

Discussion
The motion of tectonic plates is the effect of driving 
and resisting forces acting on the plate. The driving 
forces (e.g. slab pull, ridge push and continental lith-
ospheric body forces) are relatively well constrained. 
The resisting forces are much harder to quantify and 
are only implicit in the numerical models. By using an 
incompressible viscous rheology instead of a (more 
realistic) compressible visco-elastic rheology, these 
resistive forces are overestimated. This causes an un-
derestimation of the deformation rates (e.g. predicted 
plate velocities, sinking velocities of (detached) slabs 
or topographic uplift). In simple models this can be as 
large as 40% for Earth-like Poisson ratios.

Conclusions
•	Compressible visco-elastic flow increases the steady 

state velocity by 40% in the case of a sinking cylin-
der for Earth-like Poisson ratios.

•	The motion of the fluid is no longer confined to a 
small region around the cylinder

•	The boundaries of fluid have large effect on the mo-
tion: the closer a boundary, the larger the resistance 
on the motion

•	Steady state results are achieved when the cylinder is 
initially (1) close to the top domain to damp out the 
visco-elastic overshoot and (2) far from the bottom so 
that the cylinder is now slowed down after obtaining 
the steady state velocity.

Results

Material Cylinder Fluid
Viscosity (Pa s) 1.64*1020 1.64
Young Modulus (Pa) 3.5*1013 350
Poisson ratio 0.4 0.4
Density (kg m-3) 7161 0
Table 1: model parameter of the reference 
model
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Figure 5: For an increasing Poisson ratio (1) the flow becomes more confined (left: the av-
erage vertical strain rate in the region below the cylinder approaches zero) and (2) the ver-
tical velocity of the cylinder approaches the analytical solution (n=0.5) (middle)
Vertical velocity differences decrease for increasing a/R


