Diagnostic Morphology for Martian Groundwater Outflows from Flume Experiments

Wouter A. Marra¹, M.G. Kleinhans¹, E. Hauber², S.J. McLelland³, B.J. Murphy⁴, D.P. Parsons¹ & S.J. Conway⁴

Introduction
- There are many channels on Mars, but climate conditions were different than on Earth.
- Different sources of water have been proposed for Mars, including groundwater as main source for channel formation [1,2,3].
- Knowledge on groundwater-induced channels is minimal due to limited occurrence on Earth.
- We aim to extend the knowledge on related processes and resulting morphology for these systems from scaled flume experiments.

Aims
- Experimental setup consists of a flume of 6 m long x 4 m wide and 1.20 m deep.
- Simulation of seepage from sub-surface groundwater level from a distant source using a constant head tank.
- Seepage from a local source (e.g. melt or precipitation) was simulated by rain simulators.
- Pressurized aquifer release using a subsurface drainage pipe with forced discharge, at:
 - sub-lithostatic pressure (only seepage)
 - super-lithostatic pressure (sediment lifted by water pressure)
- Data: time-lapse imagery and laser-scanned DEMs.

Methods

Pressurized Groundwater
- Converging flow upstream: feather-shaped head.
- Deposition of lobes after first overflow due to infiltration in unsaturated substrate (sieve deposits).
- No morphology left by actual seepage process.
- Not found on Mars without pits or chaos (see next).

Super-lithostatic Pressure
- Pit formation: emergence of channels
- Flow from source area carved by emerging groundwater.
- Converging flow features disconnected from source area.

Local Infiltration
- Surface runoff: Seepage zonesaturated sediment

Pressurized Groundwater
- Converging flow features upstream: feather-shaped head.
- Deposition of lobes after first overflow due to infiltration in unsaturated substrate (sieve deposits).
- No morphology left by actual seepage process.
- Not found on Mars without pits or chaos (see next).

Super-lithostatic Pressure
- Pit formation: emergence of channels
- Flow from source area carved by emerging groundwater.
- Converging flow features disconnected from source area.

Conclusions
- Different sources of groundwater for channel formation produce distinct types of valleys and channels.
- Groundwater sapping:
 - Produces theater-shaped valley heads.
 - Flow piracy occurs when the water source is distant, this focusses flow and enhances development of a few channels.

Key Features
- Different sizes of valleys due to flow piracy.
- Theater-shaped valley heads due to mass wasting processes.
- Valley depth relates to groundwater level.
- Further developed valleys are deeper as groundwater level is deeper upstream.

Upcoming papers
- Paper on these experiments (and others): formative timescales, diagnostic morphology and hydrological modeling.
- Interpretation of Martian morphology.
- Morphodynamical modeling of these systems.

References

LPSC 2013: abstract 1899

Universiteit Utrecht

Research group

Martian River and delta morphodynamics

1. Fac. of Geosciences, Utrecht University, the Netherlands, w.a.marra@uu.nl; 2. Institute of Planetary Research - DLR Berlin, Germany; 3. Dep. of Geography Environment and Earth Sciences, University of Hull, United Kingdom; 4. Dep. of Physical Sciences, The Open University, Milton Keynes, United Kingdom.

Converging flow: Seepage from a local source (e.g. melt or precipitation) was simulated by rain simulators.

Pressurized aquifer release using a subsurface drainage pipe with forced discharge, at:
- sub-lithostatic pressure (only seepage)
- super-lithostatic pressure (sediment lifted by water pressure)

Data: time-lapse imagery and laser-scanned DEMs.

Seepage Zone

• Knowledge on groundwater-induced channels and resulting morphology for these systems is minimal due to limited occurrence on Earth.

Surface Runoff
- Seepage from a local source (e.g. melt or precipitation) was simulated by rain simulators.
- No morphology left by actual seepage process.
- Not found on Mars without pits or chaos (see next).

Unsaturated Sediment

• Pressurized groundwater release:
 - Results in channel head with converging flow features.
 - Downstream lobate deposits on unsaturated sediment.
 - Super-lithostatic pressure breaks surface and forms pits in the source area.