Flow patterns near hummocks in intertidal mussel beds

Jasper Donker, Maarten van der Vegt and Piet Hoekstra

Project Mosselwad is funded by the Wadden Fund

- Some mussel beds develop hummocks while others do not
- Highest hummocks in low lying areas
- Hummock formation has effects on:
 - Mussel bed stability
 - Local hydrodynamics

The objective is:
Determine the effects of an hummock on local hydrodynamics

Method

Measure flow characteristics:
- On top of mussel hummock
- Next to hummock
- Measured 0.15 m above bed

Compare with model results

Results

Observations flow velocity (Fig 4) show:
- During high water velocities similar
- At low water acceleration over hummock (circles)
- At very low water (0.05m above patch) strong acceleration next to hummock

Model results (Fig 5) show:
- At very low water (top figure):
 - Strong flow acceleration next to hummock
 - Deceleration over hummock
 - Large decrease in velocity behind hummock
At low water (bottom) velocity acceleration over patch

Conclusions

- Strong enhancement of flow next to hummock during very low water
- Strong flow velocities can enhance erosion next to hummock
- On top of hummock forces are largest but mussels stabilize sediment and enhance deposition
- In area’s with stronger flow velocities (usually lower areas) this could enhance hummock height