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Two layers experiments consist of a lower ductile layer made of silicone putty 
and an upper brittle layer consisting of feldspar sand. Extension is induced by 
pulling a plastic sheet from under a fixed sheet in the direction of the arrow. In 
this way the velocity discontinuity is stationary.
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Strength ratio corresponds to ratio between the strength of the brittle 
and the ductile crust, thus reflects the degree of coupling  Here, in the 
series of analogue models the strength ratio only depends of the strain 
rate at which the experiment has been deformed. In nature, the initial 
the initial thickness of the brittle and ductile crust as well as the strain 
rates are parameters that are a priori difficult to estimate. 
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The geometry of continental rifts is strongly controlled by the rheology of the 
lithosphere at the onset of rifting. This initial geometry will further control the de-
velopment of ocean spreading centers and the structure of adjacent passive mar-
gins. Therefore, understanding the influence of coupling between the different 
layers of the lithosphere with and without laterally variable strength in the crust 
is key when investigating continental rifts. In this study we infer the influence of 
coupling in the crust on the rift geometry by means of crustal scale analogue ex-
periments, where we characterize the response of the crust to deformation in 
terms of the strength ratio between brittle and ductile crust. The degree of cou-
pling has been varied for setups containing or not a pre-existing weak zone.  
We use the concept of strength ratio to compare the models to nature. The ob-
tained geometry give then a idea of the coupling conditions under which rifting 
developed in nature.

The velocity impacts on the strength of the ductile layer and hence the degree of brittle ductile coupling.

Increasing coupling

Increasing coupling

Red sea 
opening

Red Sea
opening

Compilation of sutures in Eastern Africa and Arabia after Kazmin (1978) 
and Stern (1994); paleogeographic reconstructions from Scotese (1997).

Overview of sedimentary basins of different age after Binks and Fairhead (1992);  Bosworth (1992); Genik (1992); Guiraud and Maurin (1991)  
 Fairhead (1988); Khalil and McClay (2001) and Lambiase (1989).
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Natural Analogues Strain rate (Est.) Crustal Thickness (km) Upper crust (km) B/D Ratio Strength Ratio 
Upper Rhine graben 1,70E-16 30 17 1,3 0,009 
Red Sea Rift 8,00E-16 30 22 2,8 0,010 
North Sea Central graben 1,16E-15 20 13 1,9 0,050 
Rio Grande Rift 8,00E-16 30 10 0,5 0,132 
Corinth Rift 1,16E-15 30 10 0,5 0,258 
East African Rift 4,00E-16 30 20 2,0 0,011 
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Two layers experiments consisting of a lower ductile layer made of silicone 
putty and an upper brittle layer consisting of feldspar sand. The model is lying 
on both sides on moving plastic sheets that are pulled apart. The model is 
dragged from below on each side and the velocity discontinuity is therefore 
fixed. The models contain a weak zone located above the velocity discontinuity.

With simple analogue models at crustal scale, we demonstrate that the 
activation of a weak zone, such as the Mozambic Ocean Suture Zone 
(MOSZ), required special conditions of coupling within the crust. The 
evolution of the coupling whitin the Afro-arabian crust is directly linked 
to the arrival of the Afar mantle plume.

During the mesozoic, series of parallel NNW trending grabens develop 
parallel to the MOSZ. Evidences for Mesozoic sedimentation above the 
MOSZ is given in Kalhil and Mc Clay (2001). From the deformation ob-
served in our models, these sediments were deposited in the syncline 
formed above the weak zone.

During Eocene, and with the arrival in the system of the Afar mantle 
plume, deformation started to focus and localized above the MOSZ, 
leading to localized stretching in the upper crust, thinning and ulti-
mately the formation of the Red Sea with sea floor spreading.

Even with the presence of a weak zone, the deformation is diffuse. 
In the brittle upper part, grabens develop outside of the weak 
zone. A small amplitude, large wavelength syncline develop above 
the weak zone.
In the lower crust, extension is accommodated by flow processes 
in the weak zone.

When increasing the coupling, the weak zone is activated.
Faults develop inside the weak zone and in the vicinity. Extensional 
deformation is distributed along two decollements that are root-
ing in the weak zone. A large wavelength syncline is also affecting 
the model.
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