
Large scale stochastic spatio-temporal modelling with PCRaster Python

Derek Karssenberg1, Niels Drost2, Oliver Schmitz1, Kor de Jong1, Marc Bierkens1, 1Faculty of Geosciences, Utrecht University, 2Netherlands eScience Center, the Netherlands, info@pcraster.eu

PCRaster
- Is targeted at the development of spatio-temporal models
- Fast model development and execution
- Scripting environments: PCRcalc and Python
- Rich set of model building blocks  for manipulating raster 
maps
- Framework for stochastic spatio-temporal model building
- Framework for data assimilation
- Tool for visualisation of spatio-temporal stochastic data
- Runs on Linux, Microsoft Windows and Apple OS X
- Can be downloaded for free and is soon open source

Stochastic spatio-temporal modelling

Model
      zt = f(zt-1 , it , pt)    for all time steps t = 1,  2, ..., T

Solution scheme

for each n in Monte Carlo samples:
  for each t in time steps:
    zt = f(zt-1 , it ,  pt   )

Building blocks

discharge = kinematic(flowDir,precipitation,..)

Building blocks to construct the transition function are functions 
on spatial data types (raster maps). Functions were developed in 
C++ and are available as Python functions (Python extension).

Solution framework (Python)

from PCRaster import *
from PCRaster.Framework import *

class SnowModel(DynamicModel, MonteCarloModel):
  def __init__(self):
    ...
  def premcloop(self):
    dem = self.readmap(’dem’)
    self.ldd = lddcreate(dem, ...)
    ...
  def initial(self):
    self.snow = scalar(0)
    ...
  def dynamic(self):
    runoff = accuflux(self.ldd, rain)
    self.report(runoff, ’q’)
    ...
  def postmcloop(self):
    mcpercentiles(’q’,percentiles,..)
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Data assimilation

Solution scheme

for each period in periods:
         for each n in Monte Carlo Samples:
             for each t in period:
     zt = f(zt-1 , it ,  pt   )
         evaluate Bayes’ theorem
            
Solution framework (Python)

def suspend(self):
  self.report(self.snow, ’s’)
  ...
def updateWeight(self):
  sum = exp(maptotal(((obs - mod)**2)/
        (2.0 * (observedStd ** 2))))
  weight = exp(sum)
  return weight
  ...
def resume(self):
  self.read(’s’)
  ...
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PCRaster on supercomputers (parallel execution)

The high computational requirements for stochastic spatio-
temporal modelling, and an increasing demand to run models 
over large areas at high resolution, e.g. in global hydrological 
modelling, require an optimal use of available, heterogeneous 
computing resources by the modelling framework. Current 
work in the context of the eWaterCycle project is on a parallel 
implementation of the modelling engine, capable of running 
on a high-performance computing infrastructure such as clus-
ters and supercomputers.

Global model runs are distributed over multiple compute 
nodes (using eScience Technology Platform eSTeP), where 
each node models one watershed. Each watershed is mod-
elled by using all processors in the node (GPUs and CPUs), 
which is enabled by an OpenCL implementation of PCRaster 
functions. This will allow us to scale up to hundreds of ma-
chines, with thousands of compute cores.

PCRaster at EGU (selection)
Poster R187, EGU2013-11126 (Tuesday), Alberti et al. A web-
application for visualizing uncertainty in numerical ensemble 
models.
Poster R215, EGU2013-3337 (Wednesday), Sutanudjaja et al., 
eWaterCycle: Developing a hyper resolution global hydrologi-
cal model.
Poster R373, EGU 2013-10215 (Thursday), Wanders et al., The 
bene�ts of using remotely sensed soil moisture in parameter 
identi�cation of large-scale hydrological models.
Poster R293, EGU2013-10355 (Friday), Straatsma et al., 
Water2Invest: Global facility for calculating investments 
needed to bridge the climate-induced water gap.
Oral Room B6, 14.15 h (Friday), Bernhard et al., Consequences 
of secondary succession on water availability in Mediterra-
nean areas: a study case in northeastern Spain.

Visualisation of stochastic spatio-temporal data

Current work: integrated modelling

Temporal control flow between model components with 
shorter (C1) and longer (C2) time steps. Each model compo-
nent requests output from the other component. C1 directly 
accepts the input of C2 , C2 expects aggregated values from 
C1, provided by the accumulator A.

Information and download at:
http://www.pcraster.eu
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