
d
ep

th
 (K

m
)

0-1000
0

100

20

strength (MPa)

Moho

1500

compressionextension

0 1500temperature (°C)

geotherm

-1000

strength (MPa)

d
ep

th
 (K

m
)

0-1000
0

100

30 Moho

1500

compressionextension

0 1500temperature (°C)

geotherm

-1000

Figure 1: Strength pro�iles modi�ied after Ziegler & Cloetingh 2004.
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2. Experimental parameters

3. Analogue experiments: set-up

Assumptions and simpli�ications

- Simpli�ied rheology of viscous layers: analogue materials are 
characterized by depth-invariant viscosity.
- Erosion and sedimentation are not included in the experiments.
- Lateral strength variation in the mantle lithosphere are not in-
vestigated; lateral changes in bulk lithospheric strength are sim-
ulated with variation in the thickness of crustal layers.
- Despite the above simpli�ications the presented experiments 
are considered representative for �irst order deformation and as-
sociated topography in presence of a laterally heterogeneous 
lithosphere under compression.

6. Summary and Conclusions
In presence of a mechanically stronger old rift subject to compressional stresses 
deformation localizes along the basin margin facing the compression direction.

Strain rate governs the geometry of the deep lithospheric structure. An increase in 
convergence velocity results in a progressive increase in aymmetry of the 
lithospheric root underlying the pop-down.

The brittle-ductile ratio in the lithospheric mantle determines the absence (low 
B/D) or presence (high B/D) of faults in the upper brittle mantle (Experiment 2, 
Experiment 3). For a low B/D ratio deformation in the mantle is accommodated by 
shear zones (Experiment 2).

Underthrusting along the margin of the old rift is the main deformation mechanism 
in case of low strength brittle mantle and high convergence velocity (Experiment 
1).

Folding and formation of a mountain root are the main deformation mechanisms in 
case of low strength brittle mantle and low convergence velocity (Experiment 2).

A weak viscous upper mantle allow the development of a major pop-down 
prismatic structure in the upper crust; a strong viscous upper mantle prevents the 
formation of a pop-down basin in the crust and underthrusting along the basin 
margin (Experiment 4). 

In presence of a mechanically weaker young rift subject to compressional stresses 
deformation starts along the rift margins and remains localized inside the weak 
plate leading to the development of pronounced topography, which is compensated 
by a lithospheric root (Willingshofer et al., 2005; Figure 5).  

1. Introduction and objectives

Lateral variation of strength in the lithosphere is an important factor controlling the 
localization of intra-plate deformation. Pre-existing heterogeneities can become 
reactivated in extension as well as in compression, governing the spatial and temporal 
development of intra-plate deformation. 
Analogue models investigating the deformation pattern and topography development 
of compressional intra-plate settings are presented. The initial scaling conditions are 
designed to analyse the effects of �irst order lateral strength variations. The reference 
lithosphere is characterized by a uniform four-layers brittle-ductile rheological 
structure. An increase in upper crustal thickness, and thus strength, has been used to 
approximate a strong lithospheric section, representative for an old rift setting. The 
introduced lateral heterogeneity is striking perpendicular to the compression 
direction.  All experiments have been deformed under normal gravity �ield. Other 
investigated parameters have been the strain rate, the thickness of the brittle mantle 
and the rheology of the viscous upper mantle.

4. Results: intra-plate deformation in presence of a strong lithospheric section 

5. Comparison with previous experiments: 
intra-plate deformation with a pre-existing 
weak lithospheric section 
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GEOMETRICAL and KINEMATICAL PARAMETERS

Experiment Convergence velocity 
(cm/h)

Strain rate
(s-1)

Bulk shortening
(%)

H brittle upper mantle
(cm)

Experiment 1 5,0 3,31E-05 20 0,5

Experiment 2 1,0 6,61E-06 20 0,5

Experiment 3 1,0 6,61E-06 20 1,0

Experiment 4 5,0 20 1,03,31E-05

Parameters valid for all models
Model length 42 cm
Model width 36 cm
Old rift width 4 cm
h UC (reference lithosphere) 1,0 cm
h UC (old rift) 1,3 cm
h LC (reference lithosphere) 0,5 cm
h LC (old rift) 0,2 cm
h viscous UM 1,3 cm
Gravity 9,81 m/s2
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Figure 2: strength pro�iles for continental lithosphere 
in nature (left) and in analogue experiments (right).

RHEOLOGICAL PARAMETERS

Layer Material Experiment Density Coeff. friction Cohesion Stress exponent Material constant Effective viscosity 

ρ (kg m-3) µ C (Pa) n A η (Pa s)

Brittle upper crust dry feldspar sand 1 to 4 1300 0.4-0.7 15-35

Viscous lower crust silicon 1 1, 2 1400 1,16 1,00E-05 1,06E+05

Viscous lower crust silicon 1 3, 4 1400 1,16 1,00E-05 8,48E+04

Viscous upper mantle silicon 2 1 1578 1,06 1,00E-05 9,35E+04

Viscous upper mantle silicon 2 2,3 1578 1,06 1,00E-05 1,02E+05

Viscous upper mantle silicon 3 4 1550 1,6 7,00E-07 3,37E+05

Lower lithosphere Na Polytungstate+glycerol 1 to 4 1600 1,2

Brittle upper mantle dry quartz sand 1, 2 1500 0.6 30-70


