Magnetic properties of variably serpentinized peridotites and their implication for remanence

acquisition during the evolution of oceanic core complexes

*Marco Maffione', Antony Morris?, Oliver Plumper?!, Douwe J. J. van Hinsbergen’ SCIEl

0

2

g

E 'Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands PLYMOUTH

2School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK UNIVERSITY
* corresponding author: m.maffione@uu.nl

= y = Universiteit Utrecht

!A MARIE CURI

Abstract 3. Variation of NRM, magnetic susceptibility, and magnetite 5. Role of serpentinized peridotites in the origin of the marine magnetic anomalies
content during serpentinization

Serpentinization of mafic and ultramafic rocks during ' Mirdita ,
- . - - . ophiolite _ I — N U L L 1008y AR B P =
hydrothermal alteration at mid ocean r1dge.s Is a process . | . . | 3 3 S 10 @ ey T P — Characteristic Secondary Bulk magnetization : :
- ® Mirdita OCC | | | / L ek B o K
that profoundly changes the physical, chemical, rheologi o Mo | | e i oo o | AF) component component : oo e
cal and magnetic properties of the oceanic lithosphere. 7 1| ~~ Mirdta oCCemaR| T A 38 1|~ Mirdita OCC only The scattered nature of the secondary o -7 PR
There has recently been renewed interest in this process - Midta OCConly | | WA o | 10mT components of magnetization, carried :g 10 ¢ A S NPLIEEE o E
. . . 6 | | m= 02300 S — ——————- 30 ' . . . e o o2 ° e ]
following the discovery of widespread exposures of ser- R=068 § § VIR ° ° o by large MD magnetite grains, signifi- < . e ° oo @ ° P
pentinized mantle at modern slow-spreading seafloors. - . o - . cantly affect the final bulk magnetiza- = o%-" © 2,8 ° %]
Unroofing of mantle rocks in these settings is achieved by < < >0 o tion (NRM). The resulting scatter of g E
displacement along oceanic detachment faults, which Y = - NRMs (Figure 13) makes those rocks ; :
eventually results in uplifted and rotated footwall sections “ - unlikely to contribute to regionally- i l
known as oceanic core complexes (OCCs). Complexities - coherent patterns of marine magnetic E
inherent in direct sampling and observation of abyssal pe- H | - o AELIos, T 15 Also supperes by o : 2No e .- ]
ridotites exposed at OCCs have, however, limited our S Down Q ratios (Figure 14), that indicate a vari- ‘ 8%, -7 INDUCED>REMANENT -
. Co. . . . 0.01 AR A Ly
knowledge of the mechanisms of serpentinization at the S f - e o t iation (NRM). i here the resultant able potential for those rocks to contrib- 0.0001 0.001 0.01 0.1
o . . c . c e - 3 ) 9 1gure . Z1jaerve lagram o1 a representative 1gure . € DUIK magnetization o1 a rock sampie, also calied natural remanent magnetization o, IS Nere tne resuitan . 1 . o
seafloors and in partlcular IS 1 elatlonshlp with the evolu- 0 20 40 60 80 100 sample showing two well-defined components of mag- of two components of magnetization: a characteristic and a secondary component. Scattered secondary components, coupled ute to the marine magnetlc anomalies. Susce ptibility (Sl)
tion at O S, Sc (% o netization. with well-custered characteristic components, result in scattered NRM directions.
0 cC . . . ) . Se (%) L Figure 14. The Konigsberger or Q ratio (NRM/H*K) is the remanent vs.
Here we present the results of an 1ntegrated, rock Flguret§.M=1gnegte VOlltISIIE; c](;nt?;}t(m) calculatedl VS. Flguret«.ﬁ..Natt.urailreman(esnt) n;}agltleftltzatlon (NRM) vs. el s P o, (Ol (e el ameerl) Fibentes kit o
maone th ale mascne th an d e tI' 1 1ca] S tu d 0 f Varl— serpentinization degree C .. €St-11t curves are CEE cu- serpen lIl.lZa }On egree (5C). best-11t curves are com- nence, while Q <1 (y ellow are a) are relative to less stabe remanenc es,
blg o £ .O d & ket I;‘ © Oﬂ% . Y i1 OCC K :;ltted steparately P (0 b TR T (LD ar | GanlEined DR 8 0 LT IhRe 5 more susceptible to the influence of the external geomagnetic field.
ably serpentinized peridotites from the first fossi - ; ataset.

, ) o , , i etachment hanging wall

recognized in an ophiolite'. Being magnetite a direct o % A
.. .. ) o1 | : : - . . -
product' of. serpe.nfginzatlton, .th'e \Cflarlat.lgn .of magnetic 5 km . =g B ’ 5 lf\daggetltefvi)llume cogtept E}ppe(ellrs to l?e a cl.lrte):lct 6. Com pOSIte effect of se rpe ntinization on the
properties 1n variably serpentinized peridotites can pro- 4) ™ » o AP o ¢ unction of the serpentinization degree 1n variably . ; . . = = g :
. . .. . . .. . . 0.12 o | .. . i . R,
vide unique insights into the intrinsic mechanisms of this ?22?.235’@75’5352) 8:;";;?993;‘:23? . Amphibolite o e zzzml’j’ » serpentinized peridotites. Such relationship indi- mag netic pro Pertles of pe ridotites 7. Serpentl nization of oceanic core com plexes
process and its evolution in the oceanic lithosphere. Fur- 0.1 || k=000t ( cates that magnetite production during serpentini-
thermore, integration with existing data from abyssal peri- o5 Dol Rt @ Senpliges | LReo zation increase exponentially, with a rapid accel-
dotites recovered from several deep sea drilling (ODP and Figure 1. Geological map of the sampling area in the . 008 eration after 60% serpentinization. The scatter of Magnetite is produced during serpentinization at an exponential rate, with signifi-
DSDP) si lled “MAP)2? ides the fi 1 WAL 0y A9, IR ot A B L A L el T S TS ) : Sl f : . L ’ Serpentinization of oceanic upper mantle peridotites can be triggered by the activity of oceanic detachment faults
) sites (calle )=~ provides the tirst complete  yiramafic mantle body representing a fossil (Jurassic) < magnetite content at a specific degree of serpenti- cant increases after ~60% serpentinization. In the early stages (Sc<60%) smaller P - ol o el e T et 26t AT o 3 T e i -
: : . . S : ) : : ratin ring amagmatic peri r spreading. r influx m) star reaction
magnet.lc database for variably (0-100%) serpentinized oceanic core complex. 0.06 n1zat.1on may be relgted t.o the Ye.mable ’.fe.ature of grains (SD and PSD) of magnetite are produced that are responsible for a stable, ?&E teh?n t }i: oliivilg;ez-lbeﬁina nclalilileo eS:riOdoiietEel:s 01(; d18111) etE(l) sef entgilnizatimlll ar? q HTE ne(tlilsat?on (b hzeslj esr) "el:“hiesalca (;r
peridotites. the interacting fluids (1.e., silica activity and regionally-coherent magnetization. After ~60% serpentinization, the growth of & P ’ & P g - J b .t . ye
0.04 . . . . . o fre . . . _

oxigen fugacity. This effect is significant (+5% larger (MD) magnetite grains produce an unstable, randomly oriented remanence WL TECOt t fe 1:13)(1
o : : : mum amount of rotation

. variation) in the MAP database, and moderate (secondary component). The change of the magnetite production rate at Sc=60% ccawater | , fltlh AMOURL OF TOLAHO
: (£1% variation) in the Mirdita OCC dataset. Such is likely related to a dramatic increase of permeability due to pervasive cracking <eafloor influx. ™\ axial V|a”ey 11 & Otediie C(.)rte dcontl-

2® | LTS . . . . . . .. . . . o X 1 1
1. Serpentinization dedaree computation AT i variable amount of newly formed magnetite is re- (i.e., rock- to fluid-dominated transition). The production of magnetite at specific ] 0 E et lsl atsst(?c e ; ©
. 100 . . . Co. . . . ..
P 9 P Sc (%) flected in the scattering of NRM (Figure 6) and k stages of serpentinization is variable and depends on the local composition of the crust \\ dA?Chme”t _ tﬁo W? 50205 ,al\;on (()aé C?r
Figure 7. Magnetic susceptibility (k) vs. serpentiniza- (Figure 7) values along the y-axis. Both the NRM reacting fluids (i.e., silica activity and oxigen fugacity). . 5 - % c ).
S Coe . : I hvdroth 1 tion degree (Sc). Best-fit curves are computed as in and k, however, appear to 1ncrease exponential]y c From the fault surface,
- Fi c . o« . c N7 5 o 0

erpegﬂmzatmq 1S a ow temperature ydrotherma 80 . igure 5 with serpentinization progression. l the .serpentl.mzatlon
alteration of mainly Olivine minerals: N pr—— P | 10 o front migrates into the
e Lo ROCK-DOMINATED SYSTEM FUID-DOMINATED SYSTEM Z footwall, producing pro-
Olivine + Pyroxene + H O = serpentine + brucite + el v 1 STABLE MAGNETIZATION UNSTABLE MAGNETIZATION B oressively deeper ser-

: : B I I _ WEAK MAGNETIZATION: NOT SIGNIFICANT NON-COHERENT CONTRIBUTE <
magnetite + talc + tremolite + H, g L CO$\ITRIBUTE TO THE OC. MAGNETIC ANOMALIES TO(THE OC. MAGNETIC ANOMALIES) break?way )/se.a\;]vater el s pentinized and magnet-

g | : n = m m m m m = = 5 ; | | INTIUX . _

- 5 a0 L 4. Magnetite grain size variation during serpentinization — ‘ ; ‘ ; — ‘ i | ized layers. Deeper por
Serpentinization degree (Sc) can be calculated from - vl — ' i i tion of the {footwall

: : .. - v o : : : :
density measurements, according to the empirical P .- > Al : : : . \ (orange layer) will dys-
formula**: * 35 | o T SP SD - SD + PSD SD + PSD + MD 5 play defferent amounts

o Tk N =74 VTR MDF values indicate that weakly Q (+SD):  (¢PSD+MD) ' (+MD) ! 00 LLl l £ S moion. Serpemtin.
| 30 |- - o MAP  |— I ; ; C : | | 4 . )

Se={33—[(d—52xm)/(I—m)]}/0.785 : — ngpeig;“zed %erld’()tlteil ) S L : | w = = 10 zazion and remanence
0 20 40 60 80 100 Y : ' ' — 5 00 :

Serpentinization degree (%) Bk LR ““s o ’ fll;l?—CO@OI')Cla\ffty OfIlIlfllleriaézealne}(lj GEJ i i i 0/0 -7 g % I_ l acquisition 1n the deep-
where: Figure 2. Frequency distribution of the degree of ser- § M\ T 2 *e % e . inole d - SD tit 2 E E E SO g 60 W est portions of the foot-
a= density (g/Cm3) pentinization of 144 peridotite samples from the s %57 “  AN \\ N T T T T T T T 0 5l o .' “ _______ — (Slr?g c oman.l B )magne e, O - O sgawater wall (red ]ayer) may
3.3 = density of fresh peridotite (g/cm?) Mirdita OCC, and 210 samples from the MAF database. = | \ = .. L%, et Whilerocks with 5¢>60% have a q>) S _ e o ?ux axial valley continue after the end of

5 - \ \ o o e “»00—0 ——————— > - V1 - -~ . . .
RN \ e o ) 00 00 090 . . . _
‘Qg\&\ AR ol ST AR AR Y gramed. (mu t1d.oma1n MD) g) =1 l fault. The remanence of
0 S——————— . magnetite fraction. & Py . _
. " o 0 P 0 | = <9 - these deeep portions will
0 20 40 60 80 100 5 . .
AF field (mT) Sc (%) ~ l e display no rotation (i.e.,
Figure 8 and 9. (Left) Alternating field (AF) demagnetization curves showing the decay of magnetization (M) during increasing AF steps. Gray area is the = 1 1
2 N t d d t b t f th t i f median d fields (MDF) by th b he d d the 0.5 M/Mmax line. (Right) MDF val 0 20 40 60 80 100 Mirdia ¢ o
range of median distructive fields given by the intersection between the decay curve and the 0. max line. (Right values vs. serpentiniza- | .
. a u re a n Is rl u I o n o e m ag n e I c ca rrl e rs tion degree (Sc). Gray area is the envelope of the MDF distribution. S ( (y ) v 10 Flfteen—Twenty Fracture
C\7o Zone®).
Both ba.ck—scatter.ed. ?leCtI'(.)Il (BSE) lmages (Figure 3) and ﬂ:le therma% variation .Of the IOW—fleld SP grains SD grains SD+PSD grains SD+PSD+MD grains Figure 15. Summary graphyc showing the effect of serpentinization on the production of magnetite (m), its . . L .
magnetic SUSCeptlblllty (Flgure 4) indicate that magnetite 1S the main magnetic carrier in the 80 ‘ T Y Grain size of magnetite 1ncreases grain-size, and the resulting magnetic remanence. Figure 16. Evolutionary model for serpentinization at oceanic core complexes.
Mirdita OCC peridotites. Magnetite always occurs within serpentine veins, as dispersed o progressively with the serpentini-
(sub)micron-sized particles (Figure 3a, 3b) in weakly serpentinized samples. At higher serpenti- © s zation degree: superparamagnetic
| | nization degrees (>40%, Figure 3c-h) magnet- A, (SP) grains form at Sc<10%. Then,
“ Ginoprorene e | owine 3 ite occurs along thicker veins as major grain =" single domain (SD), pseudo-single
S \ 4 aggregates (>50 um). w0 - domain (PSD), and multidomain 8 COﬂCl usions
g , e ] (MD) magnetite grains are pro-
). -Serpentine Y F § o - | | -80 0 ! 4'0 ' 86 ! 120 o 40 80 120 o 40 80 G 40 80 120 duc&td at SC Of 10%, 40%, and
- . E ! PU14 };‘ﬁ;‘iﬁ) ;;d ﬁlog: retm e (mm) ol e (mt) 60%, respectively. 1. We documented for the first time the variation of magnetic properties across the complete range of serpentinization degrees (0-100%).
— 1 (below) tempera- 3RS LIS ORGP IRvET GIES (| NLE) CRGRIIG @ BT S 1 8 6 TR T L ) VETT S 2. The exponential increase of NRM, magnetic susceptibility, and magnetite content during serpentinization implies a major change in alteration conditions from rock-dominated to fluid-dominated systems at a critical serpentinization
p g p y g g SEIp p ] g y p

able degree of serpentinization (Sc).

Magnetite 1 ture variation of

10% < Sc < 40%

fo 5 the low-field mag threshold of 60%. We suggest that this transition is caused by a dramatic increase in transient permeability due to a pervasive mechanical weakening of the reacting rock during serpentinization.
4 S 1100 - - ) ) : : e e : - 5o - . . ; : o 0,0 o o : : - :
_ YR S netic susceptibility 1 05 | | | | Dataf o T e 3. The grain size of newly formed magnetite is directly correlated with the serpentinization degree. Very fine, super-paramagnetic (SP) particles are formed during the initial stages of serpentinization (<10%), single-domain (SD) magnetite
5, ] Olivine B -, 7 . . I I [ I I : | | | | . . . . . . . . . . .
I . 000 | meaegntéfi?é't'on : g(‘)‘;'l'l‘:lgg p;‘;last‘?lfi'd i o Vg occ] | . - 1 Mifi’ rom; ¢ VT '1tad " an is produced up to 40% reaction progression, while pseudo-single-domain (PSD), and multidomain (MD) grains are formed at 40% and 60% reaction progress onwards, respectively.
S - ~ - 1 and gray lines, ) SD ¢ MAP i o . | | farSeDc ar(;lcl:\t/legze yd mlfliil 4. SD and PSD magnetite grains, mostly produced during the initial stages of serpentinization (Sc<60%), can carry stable magnetizations. The MD fraction formed within sparse, larger veins at later serpentinization stages (Sc>60%), car-
| 100 um : . O o w0 w0z zo respectively). — e ‘ LS C > al m.agnent.e. c ries only scattered low stability components. This evidence, together with variable Konigsberger ratios, suggests that variably serpentinized peridotites are likely not able to contribute to a regionally-coherent pattern of oceanic magnetic
: T (°K) A 3 \ 3 3 proportion of MD grains varies be- I;
00 == e R e, ] | \ | | i <10% and ~80% (Figure 11 ANOMELES.

< - PMO1 1 o T 40%‘&..'2‘0% ° / 1o 03 e N g, l“‘lfeenTh J ar(ll ;Mll)gl;re ’ 5. Serpentinization at oceanic core complexes migrates from the fault surface into the footwall. Magnetization acquisition starts at the fault surface and may continue until complete footwall uplift and rotation. Serpentinized peridotites

: oivine | > ' = o Wi SRS > | N 0. Ahe abundance ol rac- close to the detachment surface acquire their remanence early in the evolution of the OCC and may record substantial footwall rotation’, whereas rocks deeper in the footwall may undergo serpentinization after (near) complete unroofing

a = | AN £ | it S A T T .\ .4 tion (inversely proportional to the and rotation!®

& f e he pop | | ' remanence ratio - Mrs/Ms) in-
S 200 o 0040 1\ 0 . . .
- Curie temperature A : m‘;'ta 0ce | | ' creases progressively with the ser-
100 - of magnetite T~ 01 : \_ex=—SD-MD | 01 ||« MAZ R > SO :
] i F e ] . Mirdita OCC+MAP| oo s ] pent1.n1zat10n degree (Sc) (Figure
0 | 2(I)o | 460 | scl)o | 800 - ¢ Q\\o\\\ _ RREN Mirdita OCC only 9 1 1 ’ rlght) -
T (°C) Dol L 1 1| 0 | | | |
1 5 10 0 20 40 60 80 100 References
Hcr/Hc Sc (%)

Maffione, M., A. Morris, and M. W. Anderson (2013), Recognizing detachment-mode seafloor spreading in the deep geological past, Scientific Reports, 3, 2336, doi:10.1038/srep02336

Oufi, O., M. Cannat, and H. Horen (2002), Magnetic properties of variably serpentinized abyssal peridotites, J. Geophys. Res., 107(5), EPM 3-1 - EPM 3-20

Kelemen, P.B., Kikawa, E., Miller, D.J., et al. (2004). Proc. ODP, Init. Repts., 209: College Station, TX (Ocean Drilling Program), doi:10.2973/odp.proc.ir.209.101.2004

Miller, D. J., and N. I. Christensen (1997), Seismic velocities of lower crustal and upper mantle rocks from the slow-spreading Mid-Atlantic Ridge, south of the Kane transform zone (MARK), Proc. Ocean Drill. Program Sci. Results, 153, 437-454.

MaclLeod, C. J.,J. Carlut, J. Escartin, H. Horen, and A. Morris (2011), Quantitative constraint on footwall rotations at the 15°45XN oceanic core complex, Mid-Atlantic Ridge: Implications for oceanic detachment fault processes, Geochem. Geophys. Geosyst., 12(5), QOAGO3, doi: 10.1029/2011GC003503.
Garcés, M., and J. S. Gee (2007), Paleomagnetic evidence of large footwall rotations associated with low-angle faults at the Mid-Atlantic Ridge, Geology, 35(3), 279, doi: 10.1130/G23165A.1.

Olivine

> 100 pm

Figure 11. (Left) Day plot with the teoretical SD-MD mixing curves for magnetite. (Right) Remanence ratio (Mrs/Ms) vs. serpentinization degree (Sc) dia-

Figure 3. BSE images of serpentinized peridotites from the Mirdita OCC. gram. Best-fit curves have been computed for the Mirdita OCC and MAP datasets.
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