Martian Groundwater Outflows in Flume Experiments Processes and Morphological Properties

WOUTER A. MARRA¹ & M.G. KLEINHANS¹ (in collaboration with: E. HAUBER², D.P. PARSONS³, S.J. CONWAY⁴, S.J. McLELLAND³ & B.J. MURPHY³) ¹Fac. of Geosciences, Utrecht University, the Netherlands, w.a.marra@uu.nl; ²Institute of Planetary Research - DLR Berlin, Germany; ³Dep. of Geography Environment and Earth Sciences, University of Hull, United Kingdom; ⁴Dep. of Physical Sciences, The Open University, Milton Keynes, United Kingdom.

INTRODUCTION

- There are many channels on Mars, but climate conditions were different than on Earth.
- Different sources of water have been proposed for Mars, including groundwater as main source for channel formation [1,2,3].

AIMS

- Knowledge on groundwaterinduced channels is minimal to limited occurence on Earth
- We aim to extend the knowled processes and resulting morph systems from scaled flume exp

	METHODS	prec
	• Experimental setup consists of a flume of	• Press
due	6 m long x 4 m wide and 1.20 m deep.	uran
٦.	• Simulation of seepage from sub-	– SU
dge on related	surface groundwater level from a distant	- SU
hology for these	source using a constant head tank.	lit
periments.	• Seepage from a local source (e.g. melt or	• Data

EXPERIMENT MOVIES

http://goo.gl/gfUbO

cipitation) was simulated by rain simulators. ssurized aquifer release using a subsurface inage pipe with forced discharge, at: ub-lithostatic pressure (only seepage) uper-lithostatic pressure (sediment ifted by water pressure) ta: time-lapse imagery and laserscan DEMs. MARS LOOK-ALIKE **KEY FEATURES** • Different sizes of valleys

haped heads

- due to flow piracy. Theater-shaped valley heads due to mass wasting processes.
- Valley depth relates to groundwater level.
- Further developed valleys are deeper as groundwater level is deeper upstream.

• Several valleys similar in size, due to absence of flow piracy.

- Headward development by mass wasting.
- Shallow valleys, due to high groundwater level.
- Simulated in experiment as precipitation, but could be melt of snow or subsurface ice.
- Converging flow features upstream: feathershaped head.
- Deposition of lobes after first overflow due to infiltration in unsaturated substrate (sieve deposits).
- No morphology left by actual seepage process.
- Not found on Mars without pits or chaos (see next).
- Similar features as sublithostatic pressure, but:
- Cracks and breaking of surface due to superlithostatic pressure.
- Pits in source area carved by emerging groundwater.
- Converging flow features disconnected from source area.

Fig. 1 Valley profiles

- as valleys develop (Fig. 4a). In the local case (Fig. 5a), the rate remains fairly constant. - Valley lengthening slows in both types of experiments (Fig. 4b, 5b). • Erosion takes place in pulses, which are more sudden in the distal cases (Fig. 4d) due to the collapsing nature of the headward development and widening.

Universiteit Utrecht

Faculty of Geosciences

MORPHOLOGICAL ANALYSIS (SAPPING ONLY)

Local N

• Sapping valleys fed by distal groundwater source are deeper and have more pronounced valley heads (Fig. 1).

Valley profile

0.5

Initital surface

- In both cases, valleys are steeper in the upstream part (Fig. 2). This relates to the difference in processes: mudflows in the upstream end, fluvial transport downstream. • Valleys become more U-shaped when
- they develop (Fig. 3). Valleys fed by distal groundwater have a higher shape index, as the valleys have steeper cliffs.

Fig. 3 Valley shapes

MORPHOLOGICAL DEVELOPMENT (SAPPING ONLY)

• Valleys become wider, deeper and longer during the experiments. - In the distal cases, widening slows

1.5

Distance along valley (m)

• In the distal experiments, the number of active valleys decreased, due to groundwater piracy.

Fig. 4 Morphological development distal sapping experiments.

Fig. 5 Morphological development local sapping experiments.

CONCLUSIONS

- Different sources of groundwater for channel formation produce distinct types of valleys and channels.
- Groundwater sapping:
- Produces theater-shaped valley heads.
- Flow piracy occurs when the water source is distal, this focusses flow and enhances development of a few channels.
- Two processes, mudflow and fluvial flow are shown by a break in slope.
- Erosion takes place in pulses due to the collapsing development.
- Pressurized groundwater release:
- Results in channel head with converging flow features.
- Downstream lobate deposits on unsaturated sediment.
- Super-lithostatic pressure breaks surface and forms pits in the source area.

References [1] Howard A.D. & McLane C.F. (1988) WRR 24(1), 1659-1674. [2] Kite E.S. et al. (2011) JGR 116, E07002. [3] Andrews-Hanna J.C. & Phillips R.J. (2007) JGR 112, E08001. Image credits HiRISE: NASA/JPL/University of Arizona, THEMIS: NASA/JPL/ ASU. Funding WAM is supported by NWO grant ALW-GO-PL/10-01 to MGK.