Morphodynamics of a double sandbar system

Timothy Price 1, Gerben Ruessink 1, Bruno Castelle 2
1 Utrecht University, 2 Université de Bordeaux 1

Background
- Nearshore sandbars continuously change shape in response to wave conditions.
- In double sandbar systems the alongshore variations in inner-bar shape may be similar to those of the outer bar: morphological coupling (Fig. 1).
- Coupling may lead to localised beach and dune erosion.
- Angle of wave incidence θ likely affects morphological coupling, but unclear how.

Aim: To quantitatively understand the morphological coupling in double sandbar systems.

Observations
- Field data
 - Gold Coast, Queensland, Australia
 - Argus: over 9 years of daily time-exposure images (Fig. 2)
- Sandbar morphology
 - Outer bar: morphological coupling (Fig. 1)
 - Inner bar: 44% in time shore-attached terrace
- Morphological coupling
 - 40% in time
 - 5 coupling types (Fig. 3)
- Hydrodynamics
 - θ and θ affect current patterns (cell-circulation vs. meandering alongshore current) and type of coupling.
 - $\theta > 30^\circ$ leads to sandbar straightening and de-coupling.

Modelling
- Model
 - 2D morphodynamic model
 - 2D hydrodynamic inner bar
 - Constant (averaged) wave forcing
 - Crescentic outer bar
 - Alongshore-uniform inner bar
 - Realistic bathymetrical data, assimilated from video images (Fig. 4)

Flow patterns inner bar
- Small θ (Fig. 5) \rightarrow Circulation patterns with rip channels (coupling types Idr and Odt)
- Increasing θ (Fig. 6) \rightarrow Meandering alongshore current (coupling types Idt and Out)
- Quantification: Swirling strength

Conclusions
- Morphological coupling is an integral part of double sandbar systems.
- Type of coupling controlled by wave angle-dependent flow pattern and degree in alongshore variability of outer sandbar.

Note