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Introduction 

Cellular Automaton (CA) models of land use change are 

grounded on the conceptual distinction between 1) the quantity 

of change per land use type, and 2) the spatial allocation of this 

change (Verburg et al., 2002) (Figure 1). The quantity of change 

is dictated by the scenario storyline, and the spatial allocation of 

change is defined by the model structure. The model structure 

consists of a set of driving factors of location (suitability factors) 

that serve as proxies for the socio-economic and environmental 

processes in the land use system, like topography, accessibility, 

and potential revenues. Although there are some exceptions, 

the selection, relative importance and parameterization of these 

suitability factors, i.e. the model structure, is in current 

applications usually kept constant in time. A crucial assumption 

implicit in this method is that the relationship between land use 

change and its explanatory processes is stationary (Manson, 

2007).  

This assumption ignores potential systemic changes in these 

relationships resulting from societal changes including 

technological, political or economic developments. A systemic 

change is a fundamental change in system structure. Because 

the notion of ‘fundamental’ is subjective, we recognize systemic 

change in the context of models by: “a system state change that 

cannot be simulated using a constant model structure”.  

Aim 

Our aim is to answer the following questions: 1) Is the 

assumption of a land use change CA with a constant model 

structure, as generally used in the land use change community, 

an adequate representation of the land use system, or do 

observations of past land use over time indicate systemic 

changes?, 2) If systemic changes seem to occur, can these be 

related to known societal changes?, 3) How does the inclusion 

of systemic changes in the CA affect model projection 

uncertainty? 

Discussion and Conclusion 

In our case study of sugar cane expansion in Brazil, the 

assumption of a constant CA model structure was not an 

adequate representation of the land use system given a time 

series of observations of past land use. Clear evidence was 

found of non-stationarity of the system, indicating systemic 

change. Because no clear reason was detected for the model 

structure and parameter changes in the identification period 

(2004 to 2012), we assumed that a future model structure could 

be any of ones found in the past. Applying this resulted in an 

increase of the uncertainty in the model output by a factor of 

two compared to a stationary model structure. 

 

In view of the above, we recommend land use change 

modellers to check, if permitted by data availability, whether or 

not the system was stationary in the past and if potential causes 

can be found for detected non-stationarity. The methodology 

shown here can be used for such an analysis. Non-stationarity 

in land use change projections is challenging to model, because 

it is difficult to determine when the system will change and how. 

We cannot expect land use change modellers to incorporate 

systemic changes in their models. Nonetheless, we believe that 

they should be more aware, and communicate more clearly, 

that what they try to project is at the limits, and perhaps beyond 

the limits, of what is still projectable, because systemic changes 

do occur in reality.  
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Figure 1: Conceptual model of a land use change 

Cellular Automaton (CA), taken from (Verburg et al., 2002). 

The non-spatial analysis is covered in the scenario 

storyline and the spatial analysis is the model structure, of 

which the stationarity is studied here.  

Figure 3: Schematic representation of the particle filter method. 

‘Obs 1’ means observations at filter moment 1, the blue line indicates 

the median system state, grey areas represent the confidence 

interval. Histograms underneath the plots illustrate the effect of the 

filter moments on a general parameter a.  
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Methods 

A time series of observations of real land use (Rudorff et al., 

2010) is assimilated into the land use change CA using a 

Bayesian data assimilation technique, the particle filter (as 

shown in Verstegen et al., accepted) (Figure 3). The particle 

filter is used to update the prior knowledge about model 

structure, i.e. relative importance of the drivers of location of 
land use change (𝑤1, 𝑤2, 𝑤3, 𝑤4), for each year from 2004 to 

2012. In this way the optimal model structure is determined 

for each of these years. We use the non-parametric Wald-

Wolfowitz test, also called Runs test (Wald and Wolfowitz, 

1940) to test whether or not the obtained time series of model 

structures is stationary. We apply a level of significance of 

10%. If the null hypothesis is rejected (p-value > 0.1) the 

variable cannot be considered stationary, so a systemic 

change is present.  

Figure 5: Projection of fraction of sugar cane in zones in the 

study area for. In panel a, it is assumed that any of the model 

structures identified in the years 2004 to 2012 can be valid in the 

future, so a random model structure is drawn from these years 

for all future years. This is done five times to show how the 

uncertainty resulting from the systemic change. Black lines 

represent the median of the block value, grey areas are 95% 

confidence intervals (for scenario 2 calculated over all values of 

the five runs together).  

Case study 

The evaluation of systemic changes and assessment of the 

consequences for projection uncertainty are performed on a 

case study of the expansion of sugar cane fields in the São 

Paulo state in Brazil, using an adapted form of the PCRaster 

Land Use Change model (PLUC) (Verstegen et al., 2012).   

 

Four suitability factors are used as driving factors of the 

location of sugar cane expansion. Sugar cane in the 

neighbourhood (1) is expected to be important because larger 

plantations require less investment costs per hectare as 

equipment and infrastructure can be shared. The distance to 

the sugar cane mill (2) determines the transportation costs of 

sugar cane to the processing unit. Potential yield (3), an 

indicator linking agro-climate conditions to crop requirements, 

is important for the potential revenues per hectare. Slope (4) 

defines the potential  for sugar cane harvest mechanization. 

The relative importance of the drivers of locations is 

determined by the weights of the four suitability factors: 𝑤1, 𝑤2, 

𝑤3, and 𝑤4 (Figure 2). 
variable p-value 

𝑤1 0.051 

𝑤2 0.148 

𝑤3 0.039 

𝑤4 0.051 

Results 

The mean weight of distance to sugar cane mills, 𝑤2, seems 

stationary (Figure 4). This is confirmed by the Runs test, using 

a 10% significance level (table on right hand side of Figure 4). 

The mean weights of the other factors clearly change over 

time. In the period 2006 to 2008, the weight of sugar cane in 

the neighbourhood, 𝑤1, is higher than in other years, and the 

weights of slope, 𝑤4, and potential yield, 𝑤3, are lower. This 

non-stationarity, indicating systemic change, is confirmed 

for all three factors by the Runs test (Figure 4). The start of the 

systemic change, 2006, is a year with no identified societal 

changes (Figure 4). The ‘recovery’ period of the system, 2009 

to 2010, coincides with years of bad harvests.  

 

The 95% confidence interval for the projected fraction of sugar 

cane per block is twice as large with systemic change as 

without (Figure 5), indicating that the use of a different model 

structure in each year results in a higher uncertainty.  

Figure 2: Method to calculate the suitability map. The weights, 

indicated by a red ring, are the variables for which stationarity is 

tested. 

Figure 4: Mean of the posterior distributions of the weights of the 

suitability factors. Occurrences of societal changes are indicated 

above the bar graph. Results of the Runs test for the weights (of 

neighbourhood, 𝑤1, distance to mills, 𝑤2, potential yield, 𝑤3, and 

slope, 𝑤4) are given in the table on the right hand side. Values that 

indicate non-stationarity at a significance level of 10% are coloured 

grey.  


