The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models

Niko Wanders, Marc F.P. Bierkens1-3, Steven M. de Jong1, Ad de Roo1 and Derek Karssenberg1
1) Department of Physical Geography, Utrecht University, The Netherlands 2) Deltares, Utrecht, The Netherlands 3) Joint Research Centre, Water Recourses Unit, Ispra, Italy

The hydrological model

In this study the hydrological model LISFLOOD (van der Knijff et al. 2010) was calibrated and validated on soil moisture and discharge observations. LISFLOOD is a hydrological rainfall-runoff-routing model in the PCRaster modelling environment. LISFLOOD is used in the operational European Flood Alert System of the European Commission for medium range flood forecasting a large river basins in Europe.

The Upper Danube Catchment

This study the Upper Danube area up to Bratislava (Figure 2) is used for the calibration. The total catchment size is 135x10^3 km² of which the southern border is formed by the Alps. Elevations range from 150 - 3150m above sea level. In the catchment, daily discharge observations for 23 locations are available for the years 2000-2011.

Scenarios

Observations of three microwave satellites (ASCAT, AMSR-E and SMOS) and 7 discharge timeseries are used to estimated the parameters of the LISFLOOD model for the Upper Danube area using the Ensemble Kalman Filter. The scenarios used in this study are, calibration with:

- One satellite soil moisture product, ASCAT, AMSR-E or SMOS
- Discharge observations, either one or seven stations
- Discharge observations and one satellite soil moisture product
- Discharge observations (one or seven locations) and all satellite products

The performance of the soil moisture simulations was evaluated against timeseries of AMSR-E (2002-2009) and discharge observation (2000-2011).

Discharge simulation

In Figure 3 timeseries for the validation of the discharge at the outlet of the Upper Danube are shown. For the simulation of discharge at the catchment outlet the calibration on only one station in the main channel is superior to other calibrations. Calibration with remote sensed soil moisture improves discharge in the upstream catchments (Figure 4). Calibrations with seven discharge locations and either ASCAT, AMSR-E, SMOS or a combination of satellites is compared to a scenario with only calibration on seven discharge locations. From the spatial evaluation it is concluded that discharge simulations are better for upstream catchment when soil moisture is included to the calibration. The RMSE for the entire catchment is only reduced when no discharge data is included (Figure 5). Including discharge observations will reduce the overall catchment RMSE.

Soil Moisture simulation

On average no significant difference is observed between soil moisture simulations in the different scenarios. However, the scenarios are compared spatially some distinct patterns are found. The improvements for calibration with ASCAT and AMSR-E are mainly found in the higher areas as can be seen in Figure 4.

Conclusions

• Adding soil moisture data improves upstream discharge simulation for the Upper Danube when discharge observation are not available
• Soil moisture simulations are on average not significantly improved. Locally improvements are found
• Land-surface parameters can be better identified and with less uncertainty when remotely sensed soil moisture is used

References:

van der Knijff et al. (2010): Lisflood: a gis based distributed model for river basin scale water balance and flood simulation, international journal of Geographical information science, 24(2), 189-212

Figure 1: LISFLOOD model set-up

Figure 2: Upper Danube Catchment

Figure 3: Discharge simulation after calibration

Figure 4: Comparison of soil moisture and discharge simulations between calibration with only discharge observation and discharge observations and different satellite datasets. Size of circle indicates relative improvement in discharge simulations compared to calibration with only discharge observations, where white circles are not significant, green circles indicate and improvement and red circles a deterioration of the discharge simulations.

Figure 5: Total Root Mean Square Error of discharge simulations at the validation locations over the Upper Danube Catchment for three different calibration scenarios

Figure 6: Calibrated saturated conductivity for 5 different scenario’s.