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Introduction The implications of 20º counterclockwise rotation of Adria during Miocene times on the tectonic evolution of the Eastern Alps are unresolved, as is the 
e�ect of slab-pull driven extension on lateral extrusion in the Eastern Alps. We have used analogue crustal scale modelling to study these interactions. The models invoke a 
northward indentation, 20º ccw rotation and an extensional eastern boundary; simulating the Alps-Adria convergence and perpendicular slab-pull driven extension, 
respectively. 
 

Methodology The analogue models had a brittle-ductile rheology (see model set-up) representing the brittle and ductile crust, respectively. The models are 
scaled to nature and modelling parameters such as amount of shortening, extension, rotation and indenter geometry are derived from literature and map (See �gure I). 
Parameters that are varied are the amount, timing and direction of extension, the width of the deformable area aswell as a 20º counterclockwise rotation of the indenter.
Top-view images of the models have been analysed with digital particle tracing techniques (DPIV) using the MatPIV software (Sveen, 2004) for Matlab®. DPIV analysis 
created surface vector �elds and strain localizations images of the incremental deformation over a speci�c time interval (Δt=3 min). The DPIV data has also been used to 
deduce the stress regimes. 

References Sveen (2004), An Introduction to MatPIV v. 1.6.1. Mechanics and Applies Mathematics, vol. 2, Department of Mathematics, University of Oslo; (Geological setting) I - Modifed after Willingshofer and Cloetingh (2003), Present day lithospheric strength of the 
Eastern Alps and its relationship to neotectonics. Tectonics, vol 22, no. 6. () . (Summary) II - Modi�ed after Pischinger et al. (2008), Fault slip analysis in the Koralm Massif (Eastern Alps) and the consequences for the �nal uplift of ‘cold spots’ in Miocene times. Swiss Journal of Geoscience, 
vol. 101(1), pg. 235-254. III - Paleomagnetic rotations a) Marton et al. (2000), Miocene rotations in the Eastern Alps- paleomagnetic results from intramontane basin sediments. Tectonophysics, vol. 323, pg. 211-223 and b) Thöny et al. (2006), Paleomagnetic evidence for large en-bloc 
rotations in the Eastern Alps during Neogene orogeny. Tectonophysics, vol. 414, pg 169-189.
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Summary 
• Induced extension, oriented perpendiculair to indentation:
 -  caused an increase of activated strike-slip faults (M1 versus M2).
 -  leads to enhanced propagation of the extruding domain towards the  
  west. Thus, the transition from a stike-slip dominated regime to a     
  compressional regime shifts westwards (M1 versus M2).
• Including a CCW rotation of Adria decreased the area that accomodates  
 extrusion and hampered the formation of strike-slip faults (M3 versus M2).
• A decrease in the width of the deformable area (M4) fosters conjugate    
 strike-slip faulting, also when a ccw rotation of the indenter is applied.

The in�uence of the rotation of Adria and extension in 
the Pannonian Basin on lateral extrusion in the Alps: 

insights from crustal-scale analogue models
Inge E. van Gelder *, Ernst Willingshofer, Dimitrios Sokoutis
Faculty of Geosciences, Department of Earth Sciences, Utrecht University, The Netherlands.  
 

*Corresponding author: i.e.vangelder@uu.nl

Conclusions 
Interaction between lateral extrusion and slab-pull driven extension leads to an increase of 
crustal ‘en-bloc’ rotations and the formation of a large extruding wedge due to a westward shift of 
the strike-slip and extensional domain. 
CCW rotation of the indenter favors deformation by thrusting over strike-slip faulting in front 
of the indenter and leads to the development of relativly small extruding wedges. 
In agreement with recent GPS data, we infer that lateral extrusion continues after the cessation of 
extension (M5), suggesting that this process is dominantly driven by the push of the indenter.
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Model 4: Rotation of Adria and Bohemian Massif 
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All models are interpreted 
using topview images and 
cross-sections. 
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Prospect: 
Lithospheric-scale models, with a 

4-layered system, subduction and de-
formable Adria.

Aim: 
Deduce the e�ects of subduction and 
rotation of Adria along with eastward 

extension on the Alpine lithosphere

A
dr

ia
(d

ef
or

m
ab

le
)

A
lp

s

Digita
l elevatio

n m
odel


