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Figure 1: Model set-up and strength pro�les showing lateral strength contrasts in the modeled lithosphere.
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Model 4

Geometric scale 1 cm = 20 Km

Compression velocity ~ 5 cm/h ~ 1 cm/y

Normal gravity deformation apparatus
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Model 5

UC: upper bri�le crust                  UM: upper ductile mantle

LC: lower ductile crust                  WZ: weak zone

SZ: strong zone
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INTRODUCTION
Lateral variation of strength in the lithosphere has been proven to be an important factor controlling 
the localization of the onset of intra-plate deformation. Pre-existing heterogeneities in the lithosphere 
can become reactivated both in extension and compression, governing the spatial and temporal devel-
opment of intra-plate deformation.
Lithospheric scale analogue models investigating the deformation pa�ern and topography develop-
ment characterizing compressional intra-plate se�ings are presented.
�e modelled lithosphere consists of a three-layer bri�le-ductile rheological structure (bri�le 
crust/ductile crust/weak ductile mantle) and has been deformed in normal gravity �eld. 
Models have been implemented with the presence of a heterogeneity located either in the ductile 
mantle or in both ductile crust and mantle and striking perpendicular to the compression direction. 
�e vertical location and rheology (WEAK ZONE vs. STRONG ZONE) of the heterogeneity have 
been the main investigated parameters.
�e modeled lithosphere is characterized by a relatively weak ductile crust and mantle and strong de-
coupling between the bri�le and ductile domains.
Presence and location of the heterogeneityand relative lateral strength contrasts within the lithos-
phere have been the main investigated parameters. 
A spectral analysis has been carried out on the elevation pro�les by means of a Lomb Transform (a 
Discrete Fourier Transform for unevenly sampled data).
�is allows us to identify the characteristic wavelengths present in the topographic signal.

Figure 2: For each model from top to bo�om: representative cross section and DEM (Digital Elevation Model) of the model surface at 20% BS; topography evolution in time; spectral analysis of topographic pro�le in time; plot of the upli� vs. time for the pop-ups A, B and C.

MATERIALS PARAMETERS

Layer Material Density Viscosity Stress exponent Material constant
ρ (kg m-3) η (Pa s) n A

Upper crust dry feldspar sand 1300

Lower crust silicon mix I 1352 3,33E+04 1,08 2,00E-05

Lithospheric mantle silicon mix II 1578 3,47E+04 1,14 1,00E-05

Weak Zone silicon mix III 1555 9,75E+03 1,30 1,00E-05

Strong Zone silicon mix IV 1555 4,00E+04 2,00 1,00E-07

Lower lithosphere Polytungstae+glycerol 1600 1,20E+00

Table 1: Material parameters

Laterally uniform lithosphere 
Model 1

Weak Zone in the lower crust
Model 2

Weak Zone in the upper mantle 
Model 3

Weak Zone in the lower crust & upper mantle 
Model 4

Strong Zone in the lower crust & upper mantle 
Model 5

CONCLUSIONS

• The presence of lateral strength heterogeneities in the lithosphere affects the deformation pattern in 
compressional se�ings

• In the absence of a lateral heterogeneity ( Model 1) the deformation history of a relatively weak litho-
sphere is characterized by early occurrence of pop-up and pop-down structures in the central part of the 
model. �ere deformation remains localized, in correspondence of a broad synform developed in the 
ductile part of the lithosphere

• A small strength contrast between a WZ or SZ and the surrounding blocks ( Models 2, 3, 4 & 5) re-
sults in a) localization of the deformation at the WZ boundaries and b) an undeformed region with �at 
Moho in correspondence to the disturbance zone, despite its vertical location and rheology

• The presence of a SZ in the centre of the modeled lithosphere ( Model 5 ) results in a later activation 
of its right boundary with respect to Model 4 where the disturbance zone is weaker than the sorrounding 
blocks

• Distribution of pop-up and pop-down structures in the brittle crust appears to correlate with the po-
sition of synforms in the ductile lithosphere. 

• From the spectral analysis of topography is not always possible to infer the geometry of the lithos-
phere in depth; major detected wavelengths infact don’t correspond to the width of the WZ/SZ despite 
from the models cross sections the link between this zone and localization of deformation is clear. 
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