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Introduction Results
The fundamental nature of the lithospheric deformation, especially the Obliquity 0° Ob|iquity 80°
deformation of the mantle lithosphere (sub-crustal lithosphere), at the South o
Island is unresolved. Two end- member behaviours have been proposed: Velocity field S Velocity field .., sranae
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mantle lithosphere may be accommodated by subduction-like underthrusting
of one plate along a narrow shear zone (Beaumont et al., 1996); or it may be
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shortened by distributed thickening of a viscous mantle lithosphere root (Mol- * o o
nar etal., 1999; Stern et al., 2000). It may also be that lithosphere is deform- o i I
ing by a combination of these two, with a temporal transition from one to an- 46010 E 00010 |

other (Pysklywec et al., 2002). § N o0 Nooo B

An important feature of the South Island tectonics is the highly oblique
nature of the plate collision that makes it a transpressional system: strike-slip
motion (~4 cm/yr) along the boundary exist at the same time with conver- &
gent motion (~1 cm/yr) (fig. 1). However, previous studies on modelling the
dynamics of the South Island collision have not included these important fac-
tors in the direction parallel to the plate boundary; instead considering this
as a two-dimensional problem.
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Maximum principal stress, view from top
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Fig. 1. (a) New Zealand and the modern day plate boundary showing subduction 800 . L . L.
. . . . 7 Strain rate, logarithmic scale, angle of internal friction = 30°
zones and average rate of plate motion (b) Cross-sections showing the switching i —
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geodynamical simulations at crustal and lithospheric scales (Thieulot, Maximum principal stress, view from top
2014). It solves the Stokes and heat transport equations using the Finite Ele- | - = x ﬁ y Stainrate Shear bands angle
ment method, relying on opensource solvers — MUMPS and SPARSKIT. e - ' < a 1 ‘| = f ! i
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The tectonic modelling is conducted using ELEFANT - a code designed for

IR
The code is very versatile and offers such features as: i |
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e The so-called Arbitrary Lagrangian-Eulerian method (Donea et al., "W W PR
2004) meaning that the grid deforms vertically allowing a free surface, 1 SO i v ket S S :
but stays intact along the horizontal axes o 20020
e Lagrangian markers used to track the material displacements 70
e \elocity- and pressure-based boundary conditions allowing more realis- L / \ @
tIC and ﬂeXIble COﬂ StralntS for the m Odels O 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000 36000 38000 4000! ED 50
e Diverse available rheologies — brittle, viscous and visco-plastic Strain rate, logarithmic scale, angle of internal friction = 30° ;ﬁ 40
Strainrate RS 30
As a first stage to modelling the South Island oblique collision, we consider feor $ 5
various configurations of shortening for a crustal depth model. The oblique 7 0
collision was modelled by prescribing velocity to two parallel walls of the [ .. ;
model. Through varying the values of the imposed velocities, the desired 2 : 0 20 40 60 80
degree of obliqueness was achieved. Having set the total velocity, conver- X ¥ E Convergence angle

gent and along-strike components are being computed as total velocity mul- 4020 m0-10 ®1020 2030 #3040 4050 SO0 WEO-70
tiplied by cosine and sine of obliquity angle respectively.

Obliquity 40°
o Conclusions

Velocity field Bses ie-om
W e e Shear bands angle increases with increasing obliquity and decreases with
: iIncreasing angle of internal friction
o e Shear bands localization deteriorates with increasing obliquity
Rl | e At 20 degrees obliquity the maximum principal stress is rotated between
Bocon t the shear bands approximately 25 degrees with two local maximums at the

oo shear bands
z e At 80 degrees obliquity the rotation angle reaches 46 degrees with local
1 minimums at shear bands. There is noticable rotation (around 13 degrees)

of principal stress axis outside of the maximum strain rate zone
e At 40 degrees obliquity intermediate behaviour is observed: less expressed
local minimums with principal stress axis rotation ranging from 4 degrees
o o In the outer part of the model to 35 degrees between the shear bands
S B e At high obliquity angles in the lower parts of the model there are noticable
upward and downward rotations of principal stress, whereas on the sur-
face the Z component of the maximum principal stress vector is negligible
e Neither absolute values of imposed velocity nor cohesion affect the
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Fig. 2. Boundary conditions
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Limitations
e Shear bands angle cannot be measured precisely due to resolution
e Resolution cannot yet be increased significantly due to memory limitations
Simplified setup used for preliminary studies: e Constant temperature throughout the domain
_ Maximum principal stress, view from top Future plans
® 1 tlmeStep “ 4 / ’ TS ! ! ¢Z Y Strainrate I T "
e Dormain limited to crust o | L - AN - A e Applying pressure boundary conditions to side faces
Brittle rheol | | AN e ey e e — v i?e-w e Adding layers beneath the crust
= | | ] ] N | - _
Trl er ?O Ogy]cf < ot taken i : ‘ g HHHESE A ¢ AENSINNZZAS T 5 e Changing the rheology to be temperature-dependent
® lemperature effects not taken INto accoun Y s'm’\’% A i s f,’fﬁfrrﬂ'i':at wad il il il 16012 o Addlng timestepping and tracers to the experiments
—__ § : e Adding markers and strain weakening
!_OQO e Changing boundary conditions, adding a zone zone of high accumulated
Physical properties used for the models: stress mimicking the Alpine fault
o] e Adding surface processes (erosion)
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