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Variable bathymetries 
 
We use SWASH to simulate wave propagation over a low (1/80), mild (1/50) and steep (1/20) sloping beach, and a 1/80 
beach with a sandbar, with Hs = 0.1 m, and Tp = 2.25 s.  
 

  
 

 

 
 
 
 
 
 
 
 

 
 
 

Energy transfers 
 
The nonlinear source term Snl accounts for energy transfers to and from a frequency f. Snl

 is estimated by integrating the 
product of the imaginary part of the bispectrum and a coupling coefficient following Herbers et al. 2000. Figure 5 shows 
the Snl term for each of the four bispectral zones as defined in the box ‘Bispectral analysis’, for the 1/20 and 1/80 slopes. 
 

Low slope (1/80) 
 
 
 
 
 
 
 
 
 
 
 
 

Steep slope (1/20) 
 
 
 
 
 
 
 
  

 

 
 
 

 

Bispectral analysis 
 
The bispectrum Bf1,f2 detects phase-coupling between 
frequency components in a triad. The discrete bispectrum 
is defined as,  
 
 

𝐵𝑓1, 𝑓2 =  
𝐸[𝐴𝑓1𝐴𝑓2𝐴

∗

𝑓1 + 𝑓2]
 

 

 
To obtain insight in the different triad interactions, four 
zones are defined, for which nonlinear energy transfers 
are calculated.  

 
 

  

 

Figure 4: The imaginary part of the bispectrum at x = 26.8 m.  

Objective 
 
Nonlinear triad interactions redistribute energy which:  
•   Transforms the  shape of sea-swell waves  

   (SS, f = 0.05 - 2 Hz)  
•   Generates energy at infragravity frequencies  

   (IG, f = 0.005 - 0.05 Hz)  
 

IG waves are found to be important in the erosion of 
beaches and dunes during storms. Recently, it has been 
suggested that IG waves may loose energy by: 
•   Transferring it back to (former) SS spectral peak 
•   IG-IG transfers that cause IG waves to steepen and      
      to eventually break  
 
Here, we investigate energy transfer patterns for 
different types of beaches, using the model SWASH.  
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Conclusions 
 
• Low slope enhances IG wave growth. IG 

interactions dominate in shallow water, resulting 
in IG energy loss. 
 

• Steep slope limits IG wave growth and thereby 
IG interactions, resulting in less IG energy loss. 
 

• At a sandbar locally stronger transfers, this is 
compensated by weaker transfers shoreward of 
the bar. 
 

 

Outlook 
• Other wave conditions 
• Other bar dimensions, concave/convex beach shapes 

Model validation 
 
Governing equations of SWASH are the non-linear 
shallow water equations and account for non-hydrostatic 
pressure (Zijlema et al. 2011). We validated (Figure 1) 
SWASH using the high-resolution, small-scale, Globex 
lab dataset with a 1:80 sloping beach (Ruessink et al. 
2013).  
 
 
 
 
 
 
 
 
 

Figure 1: Measured (dots) and modelled (lines) significant wave 
height Hs versus cross-shore distance x, for (a) SS waves and 
(b) incoming (circles) and outgoing (dots) IG waves.  

 
• Onset of SS wave 

breaking and dissipation 
amount captured well 
 
 

• IG wave height increase 
and arrest in good 
agreement 
 
 

• IG dissipation slightly 
overestimated 
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Figure 5: Snl  terms plotted versus f and x. Vertical dashed line 
is the cut-off between IG and SS frequencies. Horizontal dashed 
line is the edge of the surf zone. 

Figure 2: (a) Hss and (b) HIG. Panel (c) shows corresponding bottom 
profiles. Reflection R2 in inner surf (h = 5 cm). Sand bar dimensions 
correspond to Δh = 70 cm, Δx = 80 m, h = 1.80 m in the field. 

Figure 3: Powerspectra in shoaling (h = 25 cm), outer surf (h = 
12.5 cm) and inner surf zone (h = 5 cm) for the three beach 
types. Vertical lines indicate offshore power spectral peak (0.44 
Hz) and its first (0.88 Hz) and second (1.32 Hz) harmonic. 

• Low slope,  
    IG frequencies      
    dominate inner  
    surf zone 

• Steep slope, 
    SS frequencies  
    dominate inner  
    surf zone 

Steep slope,  
weak IG wave 

growth, high R2 

Low slope,  
strong IG wave 
growth, low R2 

Inner surf zone 
 
Low slope 
• Transfers involving two or more IG frequencies 

dominate (I,II) 
• Energy cascades from low to high IG frequencies and 
‘harmonics’ (I,II,III)  
 

 
Steep slope 
• Transfers involving two or more SS frequencies 

dominate (III, IV) 
• IG interactions are weak, small transfer/loss 

 

 

Sandbar 
 

At bar locally stronger transfers, shoreward of the bar 
weaker transfers  
 

Figure 6: Difference in Snl  of bar  minus non-barred 1/80 slope, 
plotted versus f and x.  
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