



# Event-scale investigations of natural and anthropogenic controls on river recession behaviour and trends

## **1** Introduction



The [Brutsaert and Nieber, 1977] streamflow recession recession analysis

 $-dQ/dt = aQ^b$ 

provides a way to link top-down data analysis with bottom-up physical theory.

| Mechanism         | Slope | Conductivity | B-N-b              |
|-------------------|-------|--------------|--------------------|
| Kinematic wave    | Steep | Uniform      | 0                  |
| Boussinesq        | Steep | Uniform      | 0                  |
| Weir              | any   |              | 0.5                |
| Linear Reservoir  | any   |              | 1                  |
| Linearized Bouss. | Flat  | Uniform      | 1                  |
| Manning           | any   |              | 1.4                |
| Boussinesq        | Flat  | Uniform      | 1.5                |
| Boussinesq        | Flat  | Power-law    | $1.5\ {\rm to}\ 2$ |
| TOPmodel          | Steep | Exponential  | 2                  |

### $\mathbf{2}$ **Research** questions

- What are the *patterns* and *trends* in B-N parameters?
- Can the B-N analysis disentangle *natural* and *an*thropogenic factors?
- Can B-N patterns be explained from *physical* mechanisms?

Geophys. Res. Atmos., 118.

### Results 3

#### Patterns 3.1



Maps of 'constant' Brutsaert-Nieber parameters a, 1/aand b suggest clear North-South gradients.

### 3.2 Trends



Distributions of trend magnitude of a and b indicate opposite trend directions.

### Summary

The Brutsaert-Nieber recession analysis method has been used to characterize  $\approx 200$ Swedish rivers. Results suggest that the B-N parameters are strongly linked to the climate-soil-land use complex. Many catchments show a trend towards more nonlinear behaviour, which is not correlated to changes in Q statistics.

### 4 Interpretation

#### Natural or anthropogenic? 4.1



Most relevant explanatory variables (to predict a and b), according to a bootstrap-like ensemble multiple regression approach [van der Velde et al., 2013].



Prediction of B-N parameters for standardized catchments, based on maps of explanatory variables.

5

# **Faculty of Geosciences Environmental Sciences**

<sup>1</sup>Utrecht University, <sup>2</sup>Wageningen University, <sup>3</sup>Stockholm University, <sup>\*</sup>p.w.bogaart@uu.nl



Land use clusters in B-N space, with superimposed general trend directions.

#### Mechanisms 4.2

| Land use type                                    | 1/a                           | b range                                | Mechanism                                     |
|--------------------------------------------------|-------------------------------|----------------------------------------|-----------------------------------------------|
| Agriculture<br>Wetland<br>Natural open<br>Forest | Fast<br>Fast<br>Fast<br>Mixed | 1-1.5<br>1.4-2.0<br>1.3-2.0<br>0.8-1.5 | Boussinesq<br>k-profile<br>k-profile<br>Mixed |
| Open water                                       | Slow                          | 0.6 - 1.2                              | Manning                                       |

## Conclusions

- Clear spatial *patterns* in B-N parameters - Attributed to climate-soil-landuse association
- Moderate trends in B-N parameters - Towards slower, more nonlinear recession
- No correlation between B-N and Q trends • Strong links with land use
- Mechanistic explanations suggested
- Trends orthogonal on generic land use axis
- Strongest trends in non-agricultural areas