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Conclusions

Aim

Field analyses at two ophiolite massifs from 
the Lower Cretaceous South Tibetan ophiolite 
belt;
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Results

Figure 2. (a) Overview of the Xigaze ophiolites within the South Tibetan ophiolite belt. (b) Geological map of the Sangsang  ophiolite. (c,d) Detail of the field relationship between the ophiolite and overlying 
forearc sediments of the Xigaze Group. (e) Geological map of the Qunrang ophiolite. (f) Faulted contact between the sills and peridotites in the Qunrang ophiolite. (g) Mylonitic structure of the fault plane. 

Figure 1. Distribution of the South Tibetan ophiolites (black colour), and 
location of the study area (red box). 
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Paleomagnetic and field geological evidence show the preservation of low-angle, extensional de-
tachment faults within the Lower Cretceous ophiolites of South Tibet. These structures developed 
in response of ‘forearc hyperextension’, a process that we define as extensive stretching of the 
overriding plate above a subduction zone associated to a magma-starving spreading center. We pro-
pose that forearc hyperextension is the key mechanism responsible for the poorly understood dis-
memberment of the South Tibetan ophiolites.

Supra-subduction zone (SSZ) ophiolites are relics of oceanic 
forearcs frequently preserved as discontinuous belts composed of 
discrete ophiolitic massifs. They usually contain incomplete, con-
densed sections compared to typical oceanic lithosphere. These fea-
tures are frequently attributed to dismemberment, but the tectonic 
causes of this process remain poorly constrained.

The aim of this study is to analyze the potential causes and mecha-
nisms of ophiolite dismemberment. In particular we tested the role 
of oceanic detachment faults, which can be preserved in ophiolites 
as fossil structures (Maffione et al, 2013; Liu et al., 2014). We will 
try to address the following questions:
Can oceanic detachment faults form within SSZ ophiolites and 
contribute to their dismemberment?

If so, what are the driving mechanisms for their formation?

Paleomagnetic analysis of crustal blocks dis-
placed by major faults;

Rock magnetism, optical and electron micros-
copy, and elemental analyses;

Fault kinematic analysis using the paleomag-
netic vectors within a Monte Carlo approach;
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Main finding from field analysis:
125-120 Ma forearc Xigaze Group sediments (locally) unconformably cover a dismembered ~130 Ma ophiolite;
Major faults (red lines in Fig. 2b and 2e) cut the ophiolite but not the Xigaze Group, and are therefore odler than ~120 Ma;
The studied faults have features compatible with oceanic detachments;
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Figure 3. (a,b,c) Equal area stereographic projections of the characteristic remanent magnetization (ChRM) directions of the studied rocks, showing the mean direction (red dots) and relative values. (d) A repre-
sentative Zijderveld diagram. (e) Decay of magnetization during thermal removal of the remanence. (f) Photomicrograph of a primary titanomagnetite grain with a Ca-rich rim from the Sangsang dykes.   
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Main finding from paleomagnetism:
Remanence is carried by high blocking temperature (> 520ºC) low-Ti titanomagnetite of primary origin;
Different mean paleomagnetic directions across the studied faults reveals the occurrence of  relative tectonic rotations;

a) b) c) d) e) f)

Main finding from fault kine-
matic analysis:

Sub-horizontal original (pre-col-
lision) rotation axes associated 
to a 40-90° of rotation;
Kinematics comparable to those 
of oceanic detachment faults;
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Figure 4. Stereonets showing contour of the 500 permissible rotation axes calculated for the studied faults within the Sangsang and Qunrang ophiolites 
using a Monte Carlo simulation. The 500 permissible angles of rotation at each site are shown by the frequency distribution diagrams.  
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A thin ophiolitic crust with a 
SSZ affinity was produced at a 
magma-starving spreading 
center located at the southern 
margin of Lhasa;

Strong stretching in the upper 
plate (forearc hyperextension) 
controlled by the subducting 
slab dynamics was accommo-
dated by detachment faults; first 
clastics from the Gangdese arc 
were deposited over the forearc;

Forearc hyperextension possibly 
coupled with arc-parallel 
stretching determined complete 
dismemberment of the forearc 
where the ophiolite were gener-
ated; forearc sediments of the 
Xigaze Group covered an al-
fready disrupted, thin ophiolite;


