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Formation of retro-wedges during collision 

INTRODUCTION

We challenge the generally accepted view that continent-continent collision results in doubly 
verging orogenic wedges with well-developed retro-wedges on the overriding plate. In fact we 
argue that retro-wedge formation is restricted to specify rheological conditions within the lower 
and upper plates as well as the plate contact; thus being the exception rather than the rule during 
collision.
In this contribution we use simple lithospheric-scale analogue experiments to infer favourable 
rheological conditions for the development of retro-wedges. In intermediate temperature 
lithospheres represented by three layer models (brittle crust, ductile crust and upper mantle), 
the contact between the colliding and neutrally buoyant continents is weak and represents the 
inheritance of a former subduction boundary. The degree of plate coupling however is not constant 
and is together with the rheological structures of the lower and upper plates, in particular the 
presence of decoupling horizons, key variable in this study. 
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Numerical Model of Collision Zones
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EXPERIMENTS WITH DECOUPLING ZONES 

antiform/synform
Reference level

thrust fault normal fault Uplift Subsidence
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Model Layer                        Density           Coefficient of           Viscosity        Power
                               

                                            (kg/m3)               friction                  (Pa s)               n 

Brittle crust                                1300                      0.7 

Ductile crust                              1400                                                  4.8 x 104              1.9

Table2: Mechanical properties of analogue materials - series B

Weak ductile crust                    1400                                                  1.8 x 104                1.3

Weak plate interface                 1400                                                 1.8 x 104               1.3

Asthenosphere                         1450                                                  7.2 x 105

Ductile upper mantle                 1550                                                 1.2 x 105               1.3

Velocity: 1.9 x 10-6  (ms-1); Length Scale: 1cmModel = 30kmNature  
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EXPERIMENTS WITH A WEAK ZONE FAVOURABLE CONDITIONS FOR THE 
FORMATION OF RETRO-WEDGES 
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Conceptual Model of Collision Zones

Pro-wedge Retro-wedge

fold-thrust belt fold-thrust beltmetamorphic core

Model Layer            Density          Coefficient of           Viscosity        Power
                               (kg/m3)               friction                  (Pa s)               n  

Brittle crust                    1510                    0.85 
Viscous crust                 1520                                                1.8 x 105 1.8
Visc. upper mantle        1540                                                 7.2 x 105   2.0

                

Table1: Mechanical properties of analogue materials - series A
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