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INTRODUCTION

 Collisional orogenic mechanics in slab retreating systems assumes the coeval evolution of 
continental accretion in forelands and extensional back-arcs in hinterlands. During convergence 
of major tectonic plates, a number of rather local roll-back systems may develop on a spatially 
restricted area, inferring the possibility of foreland accretion and back-arc extension driven by 
different slabs interacting in the same area. We aim to investigate this interaction in the case of 
the many instances of rapid roll-back subductions that dominated the recent evolution of the 
Mediterranean orogenic systems. 

 A typical evolution, such as the one of the Carpathians below, indicate that the shortening has 
gradually duplicated crustal blocks from the lower continental plate and shifted the subduction 
zone far towards the foreland without any significant formation of retro-wedges. This results in a 
gradual migration of contractional exhumation in a foreland-ward direction, which is opposite to 
the commonly assumed double-vergent collisional wedges.

OBSERVATIONS

 The extension may take place far at the interior of the upper plate, as is the case in various segments of 
the Carpathians, but in most cases of the Dinarides, Apennines or Hellenides it take place superposed or far 
into the foreland when compared with the position of oceanic suture zones. In all the systems, extension in the 
back-arc and frontal accretion migrate gradually towards the foreland, coeval with the slab retreat. The 
amount of extension is proportional with the amount of retreat and the amount of crust accreted from the lower 
plate.
 These observations infer a different mechanical behavior of orogens affected by slab retreat during 
collision: crustal accretion by the migration of deformation and exhumation 
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 Observations in a number of Central Mediterranean orogenic areas 
combined with coupled analogue and numerical modelling provide a number 
of important inferences:
- The internal geometries and the behavior of the mantle lithosphere of 
Mediterranean-type orogens depend on the strength and the degree of 
rheological coupling between various lithospheric layers;
- During collision, these orogens evolve by gradual accretion of crustal 
material from the lower plate and gradual migration of shortening, exhumation 
and back-arc extension. No orogenic retro-wedges are required in such 
orogenic evolution;
- The gradual shift is driven by the main retreat of the subduction zone. The 
accreted lower crustal block will connect with the main subduction zone and 
may actively delaminate the lithospheric mantle;
- Due to rapid coeval evolution in a restricted area during Africa-Europe 
convergence, the retreat of different slabs induced similar effects in the same 
area. The back-arc extension of the Pannonian Basin resulted from slab 
retreat in both the Carpathians and Dinarides, while foreland crustal accretion 
and associated exhumation interacted in the Adriatic foreland during the final 
stages of convergence of both the Dinarides and the Apennines.

 Numerical model of collision demonstrating the concept of foreland propagation of crustal scale accretion 
and associated exhumation. The model contains a 2 layer crust (upper 20km wet quartzite, and 15 km 
plagioclase). The model assumes a thermal gradient of 25C/km for the first 10km and subsequently 10C/km 
until the base of lithosphere at 118 km. The shortening in the model is 1cm/year, an erosion rate of 9mm/year 
and as sedimentation rate of 0.9 mm/yr. 

 Analogue model of collision demonstrating the concept of foreland propagation of crustal scale accretion 
and associated exhumation. The lithospheric model contains a 2 layer crust that is rheologically coupled in the 
upper plate and decoupled in the lower plate. The model records up to 25% bulk shortening (~300km). 
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