Interference of Different Subduction/Collisional Systems in Mediterranean orogens
Liviu Matenco, Katharina Vogt and Ernst Willingshofer
Faculty of Geosciences, University of Utrecht, The Netherlands

INTRODUCTION
Collisional orogenic systems in subduction zones (SACS) are characterized by a variety of subduction and collisional processes. During collision, the crust of the subduction zone is consumed, and the continental crust is uplifted. The subduction of oceanic lithosphere leads to the formation of an oceanic subduction zone, whereas the collision of two continental plates leads to the formation of a continental subduction zone. The interference of subduction and collisional processes is a common phenomenon in the Mediterranean region, where the collision of the Adriatic plate with the Eurasian plate is accompanied by subduction of the African plate. The interference of subduction and collisional processes can lead to the formation of complex tectonic structures, such as orogenic belts and foreland basins. The study of the interference of subduction and collisional processes is important for understanding the tectonic evolution of the Mediterranean region.

OBSERVATIONS
The interference of subduction and collisional processes can lead to the formation of complex tectonic structures, such as orogenic belts and foreland basins. The study of the interference of subduction and collisional processes is important for understanding the tectonic evolution of the Mediterranean region. The interference of subduction and collisional processes can lead to the formation of complex tectonic structures, such as orogenic belts and foreland basins. The study of the interference of subduction and collisional processes is important for understanding the tectonic evolution of the Mediterranean region.

NUMERICAL
Numerical models of collision demonstrating the concept of faulted propagation of crustal-scale accretion and associated exhumation. The model assumes a thermal gradient of 25°C/km for the first 10km and subsequently 10°C/km until the lithosphere depth of 110 km. The model includes a shortening rate of 15% per year, an extension rate of 0.5% per year, and an exhumation rate of 0.9 km/yr.

INFERENCE
Observations in a number of Central Mediterranean orogenic areas combined with coupled analogue and numerical modelling provide a number of important inferences:

- The internal geometries and the behavior of the mantle lithosphere of Mediterranean orogenic systems depend on the strength and the degree of decoupling at the plate boundaries.
- The transition from subduction to collisional orogenic systems is a gradual process, and it is not always possible to distinguish between the two processes.
- The interference of subduction and collisional processes can lead to the formation of complex tectonic structures, such as orogenic belts and foreland basins.
- The study of the interference of subduction and collisional processes is important for understanding the tectonic evolution of the Mediterranean region.

REFERENCES

Faculty of Geosciences, University of Utrecht, The Netherlands