Strain localization during compression of a laterally heterogeneous lithosphere o
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1. Introduction and objectives 2. Analogue experiments: set-up 3. Results: sub-series A, a 90°
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Figure 1: a) Sketch of the experimental set-up; b) representative strength profiles calculated for a convergence rate of 1 cm/h, describing the very initial Figure 2: Experimental results for sub-series A. Representative cross sections and DEM( Digital Elevation
deformation stage; c)effect of different convergent velocities on crust-mantle coupling; d) geometry of the experiments (top-view). Models) of the experiments’ surface at 20% bulk shortening.
4. Results: sub-series B, oblique strong domain 5. Summary and Conclusions
a 80° a75° a 60° a 45° Experimental outcomes indicate that the presence of a strong lithospheric domain

SD controls localization of deformation at the vertical rheological boundaries.

Elevation (cm) High relief build-up is associated with strain localization.
"o In case of a strong domain perpendicular to the convergence direction (sub-series A)

the brittle-ductile ratio in the lithospheric mantle determines the absence (low B/D)

ny . _ . - or presence (high B/D) of faults in the upper brittle mantle (Experiment 2,
8 3 é 3 3 Experiment 3). For a low B/D ratio deformation in the mantle is accommodated by
i 3 3 s §=, folding (Experiment 2).

- B 0 When the strong domain strikes oblique to the convergence direction, deformation is

partially localized along the vertical rheological boundaries, due to along-strike
variation in distance from the moving wall.

-0,15

Strength variation at depth leads to a curvature in the thrust systems, particularly for
increasing obliquity of the strong domain (a 60° and a 45°).

The dip direction of the main underthrusting plane depends on which of the strong
domain margins is localizing deformation: when the margin facing the moving wall is
activated the main underthrusting plane dips towards the fixed back wall; when the
margin facing the fixed back wall is activated the main underthrusting plane dips
towards the moving wall.
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Figure 3: a) DEM (Digital Elevation Models) at 20% bulk shortening; SD: strong domain; b) top-view pictures at 20% bulk shortening
with interpreted structures; SD: strong domain; the colored area indicates the approximate location of the strong domain; c) inter-
preted cross sections (location is indicated in the top-view pictures in b); the red circle indicates sections where the main under-
thrusting plane dips towards the moving wall and a thrusts belt is localized at the margin of the strong domain facing the fixed back

wall; the blue circle indicates sections where the main underthrusting plane dips towards the fixed back and a thrusts belt is local-
ized at the margin of the strong domain facing the moving wall (see also Figure 3d).
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