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To b = 1 or not to b = 1. Numerical, conceptual, hydraulic and geometric explanations for observed
streamflow recession behaviour — a case of being right for which reason?
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1 Observed streamflow recession

A key question in hillslope and catchment hydrology is
how empirical values for recession exponent b as found
by the top-down Brutsaert-Nieber streamflow recession
analysis

−dQ/dt = aQb (1)
can be explained from underlying bottom-up physical
theory such as the Boussinesq equation
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Empirical data (here: 220 catchments in Sweden) suggest
that exponent b varies mostly within the range 1–1.5.

2 Numerical explanations

Näıve interpretation of the recession response from a
Boussinesq model applied to sloping aquifers could lead
to a conclusion of b = 1 during Late-time. Adapted from
Rupp and Selker, [2006]
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A correct interpretation of Late-time b = 0 renders the
straightforward nonlinear Boussinesq equation inconsis-
tent with observations. From Bogaart et al., [2013].

Conclusion: b ≥ 1 from the nonlinear Boussinesq
equation applied to sloping aquifers is likely due to
näıve interpretation of numerical model output.

2.1 Conceptual background
From Equation (1) it follows that

Q(t) =

c1e
−at for b = 1

[(b− 1)(at+ c2)]
1

1−b for b 6= 1
(3)

and three cases can be distinguished:
b < 1: a finite volume V is drained in finite time t =

−c2/a.
1 ≤ b < 2: a finite volume V is drained in infinite time.
b ≥ 2: an infinite volume V is drained in infinite time.

Conclusion: Numerical implementations of Eqn (2)
often don’t drain completely, and therefore shift to-
wards artificial b = 1 behaviour.

Summary

We conclude that explanations of observed
b = 1 based on the linearized Boussinesq equa-
tion applied to sloping aquifers are probably
flawed. We suggest that observed b = 1 to 2
from these aquifers is more likely to be due to
system properties like conductivity decreasing
with depth and and divergent planform, which
both have a positive effect on b.

2.2 Linearization
Equation (2) is often linearized by replacing a dynamic
h by a constant pD:

q = −kh
(
dh

dx
cosα+ sinα

)
=⇒ −kpDdh

dx
cosα−kh sinα

(4)
which can be shown to lead to b = 1 [Brutsaert and
Nieber, 1977].
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Numerical implementations of Eqn (4) demonstrate that
water ‘sticks’ to the bedrock surface, preventing drainage
in finite time, c.f. Stagnitti et al., [2004].

Conclusion: The linearized Boussinesq equation’s
b = 1 behaviour is consistent with the same mecha-
nism plaguing numerical implementations of the non-
linear Boussinesq equation.

3 Hydraulic explanations

The straightforward assumption of uniform k in (2) can
be relaxed, e.g by assuming a power-law profile k =
kD(z/D)n such that

b = 2n+ 1
n+ 1 (5)

Although the uniform-k case n = 0 =⇒ b = 1 again
should be considered an artifact, (5) enables b = 0
to 2. Similarly, TOPmodel’s assumption of exponential
k-profile leads to b = 2.

Conclusion: Non-homogeneous soils in conjunction
with the Boussinesq or Kinematic Wave equation do
provide explanations of b ≥ 1.

4 Geometric explanations
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Most constant-k applications of the Boussinesq eqn as-
sume unit-width hillslope geometry, resulting in b = 0.
If a more representative divergent geometry is assumed
[Bogaart and Troch, 2006], it can be shown that b→ 1.

Conclusion: Planform geometry is a significant fac-
tor in explaining observed b values


