Which groundwater-irrigated crops contribute to aquifer stress in California and the High Plains?

Introduction
- Global rate of groundwater depletion has more than doubled since the 1960s
- Groundwater accounts for ~40% of the total consumptive irrigation water use globally
- Agriculture consumes most of the groundwater abstracted
- But how do specific crop types impact groundwater resources of a specific aquifer system?

Case study:
- USA has the 2nd highest rate of groundwater abstraction in the world
 - The Central Valley (California) and High Plains aquifer systems
 - Have the highest rate of groundwater abstraction in the USA
 - Respectively represent 7% and 11.7% of the USA's $300 billion in agricultural revenue (2007)

Methodology

\[B_{\text{corn,cty}} = \text{Net blue water requirement} \]
\[e_{\text{corn,cty}} = \text{Total irrigation efficiency} \]
\[A_{\text{corn,cty}} = \text{Irrigated acreage} \]
\[p_{\text{corn}} = \text{Proportion of irrigated acreage irrigated with groundwater} \]

Groundwater abstraction:
- At county scale (cty)
 \[G_{\text{corn,cty}} = B_{\text{corn,cty}} \times A_{\text{corn,cty}} \times p_{\text{corn}} \]

- At aquifer scale (aq)
 \[G_{\text{corn,aq}} = \sum (V \times e_{\text{aq}} \times p_{\text{aq}}) \]

Groundwater footprint:
- The area required to sustain groundwater use and groundwater-dependent ecosystem services of an aquifer
 \[GF_{\text{corn,aq}} = \frac{G_{\text{corn,aq}}}{R_{\text{aq}}} - F_{\text{aq}} \]

Results
- Crop type contribution to the agricultural groundwater footprint in the aquifers of the Central Valley

Conclusion
- Crops grown for cattle-feed and ethanol production are the biggest stressors → impact of meat consumption and economic policies on aquifer stress
- Lower groundwater footprint than previously estimated in the Central Valley, likely due to large-scale surface water diversions increasing artificial recharge
- Recharge and irrigation application efficiency are among the most uncertain measured parameters → need for improved data

Parameter contribution to the uncertainty of the agricultural groundwater footprint in the Central Valley

Parameter contribution to the uncertainty of the agricultural groundwater footprint in the High Plains

Extent of the agricultural groundwater footprint in the aquifers of the Central Valley

Extent of the agricultural groundwater footprint in the aquifers of the High Plains

Table of Crop Contribution to Agricultural Footprint

<table>
<thead>
<tr>
<th>Crop Type</th>
<th>Contribution to Agricultural Footprint in the Central Valley</th>
<th>Contribution to Agricultural Footprint in the High Plains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>0.3 ± 0.2</td>
<td>5.2 ± 2.3</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>1.7 ± 1.0</td>
<td>11.2 ± 5.1</td>
</tr>
<tr>
<td>Pasture</td>
<td>1.5 ± 0.9</td>
<td>15.4 ± 8.3</td>
</tr>
</tbody>
</table>

Laurent Esnault1, Tom Gleeson1, Yoshihide Wada2, Jens Heinke3, Dieter Gerten3, Elizabeth Flanary1, Marc F. P. Bierkens4.5, Ludovicus P. H. van Beek2

1Department of Civil Engineering, McGill University, Montreal, Quebec, Canada | 2Department of Physical Geography, Utrecht University, Utrecht, The Netherlands | 3Potsdam Institute for Climate Impact Research, Research Domain of Earth System Analysis, Potsdam, Germany | 4Unit Soil and Groundwater Systems, Deltares, Utrecht, The Netherlands