
A framework for integrated, multi-scale model construction and uncertainty assessment

1 Department of Physical Geography, Utrecht University, The Netherlands (o.schmitz@uu.nl)

2 Flemish Institute for Technological Research (VITO), Belgium

Oliver Schmitz1 , Jean-Luc de Kok2, Kor de Jong1 and Derek Karssenberg1

Motivation and objective Example model

Conclusions

The function notation syntax for input requirements decouples the
implementation of the state transition function and the interface
specification, and therefore increases the generic design of
component models. Model builders therefore can easier select
and assess alternative model compositions.

The construction of self-contained modules with standardised
interfaces leads to the development of more generic and
reusable component models. However, required inputs can be
obtained from different sources such as static data read from
disk (e.g. by readmap("runoff")) or as output from other
components generated at model runtime (e.g. by runoff.get()).
Different sources require a different input request syntax within
a state transition function and therefore a dependency between
the implementation of the state transition function and the input
interface is introduced.

We aim to provide a uniform specification of the input requests
within a state transition function independent of the source type.
We propose the function object notation as means to specify
input requirements and apply this approach to an integrated
modelling framework implemented in Python. The used request-
reply execution supports for Monte Carlo simulations.

Results can be visualised for each component, timestep and cell.
The figure shows the catchment (A), the probability of cells being
excluded from planting due to water scarcity in 2045 (B) and the
probability of trees present in a cell in 2100 (C). Timeseries can
be displayed interactively for each cell (D).

The Input class returns a function object that is assigned to the
tot_runoff variable (line 6) at initialisation of the component model.
While executing the dynamic section at runtime, the function call
(line 18) initiates the execution of the invoked component until the
current time step.
The process implementation (the dynamic section) remains the same
irrespective of input data obtained from disk or external components.

The following listing shows the implementation of the land use
change component and its instantiation within the modelling
framework. The component initiates every year an input request to
the runoff accumulator. Each component can implement its own
postmcloop with operations calculating ensemble statistics.

References

[1] http://www.pcraster.eu
[2] Karssenberg, D., de Jong, K., van der Kwast, J., 2007. Modelling landscape dynamics with Python.
 International Journal of Geographical Information Science 21 (5), 483-495.
[3] Schmitz, O., Salvadore, E., Poelmans, L., van der Kwast, J., Karssenberg, D., 2014. A framework to
 resolve spatio-temporal misalignment in component-based modelling. Journal of Hydroinformatics
 16(4), 850-871.

We apply the framework to build an integrated model with
components modelling land use change, surface runoff and
eucalyptus tree growth. The components use different time steps,
discretisation differences can be bridged with the help of
accumulators [3]. The numbers indicate the order of requests and
replies:

The modelling framework contains template classes allowing for
dynamic modelling and Monte Carlo simulations. The modeller can
use map algebra operations provided by the PCRaster Python
module [1, 2] to implement stochastic spatial processes.

A function notation of input requests implicitly defines the
execution order of component models. Called components can
execute several time steps until the time step matches the one of
the requesting component. Monte Carlo simulations of integrated
models are executed according to the following scheme:

Building blocks and modelling framework

Outputs

Eucalyptus growth
Temporal discretisation: 7 days

Land use
Temporal discretisation: 1 year

Accumulator
Surface runoff
Temporal discretisation: 1 day

request
discharge

1

request
discharge

2

request
tree height

3

request
land use

4

provide
land use

5

provide
tree height

6

provide
discharge

7

provide
discharge

8

Step 1:
for all c in C:
generate a set S with parameters and inputs suitable for component c

Step 2:
run_until(ci, tj):
if input i from ck required:
if not ck at tj:
run_until(ck, tj)

obtain input i
while ti < tj:
calculate state transition function

for s in S:
for each time step ti of c1:
run_until(c1, ti)

Step 3:
for all c in C
run postprocessing over all S and time steps of c

1class Landuse(DynamicModel, MonteCarloModel):
2 def __init__(self, start, end, delta, cloneMap):
3 DynamicModel.__init__(self, start, end, delta)
4 MonteCarloModel.__init__(self)
5 setclone(cloneMap)
6 self.tot_runoff = Input(TotalRunoff(start, end, timedelta(days=1), cloneMap))
7
8 def premcloop(self):
9 self.yearlyRunoffRequired = self.readmap("requiredRunoff")
10 self.mainStreams = self.readmap("streams")
11 self.ldd = lddcreate("dem.map", 1e31, 1e31, 1e31, 1e31)
12
13 def initial(self):
14 self.trees = spatial(boolean(0))
15 self.export(self.trees, "trees")
16
17 def dynamic(self):
18 total_runoff = self.tot_runoff(self.current_time_step())
19 runoffTooLow = self.mainStreams & (total_runoff.totRunoff < self.yearlyRunoffRequired)
20 noNewTrees = catchment(self.ldd, runoffTooLow)
21 suitabilityNeighbourhood = ifthenelse(window4total(scalar(self.trees)) > 0.5, scalar(1), 0)
22 suitabilityRandom = ifthen(pcrnot(self.trees), uniform(1))
23 suitability = ifthen(pcrnot(noNewTrees), (suitabilityNeighbourhood + suitabilityRandom) / 2.0)
24 suitSort = order(0.0 - suitability)
25 self.trees = pcror(self.trees, cover(suitSort < 11, 0))
26 self.export(self.trees, "trees")
27
28 def postmcloop(self):
29 mc_probability("trees", self.sampleNumbers(), self.timeSteps())
30
31model = Landuse(datetime(2010, 1, 1), datetime(2100, 1, 1), timedelta(days=365), "clone.map")
32dynModel = DynamicFramework(model)
33mcFrw = MonteCarloFramework(dynModel, nrRealisations=500).run()

