
A framework for integrated, multi-scale model construction and uncertainty assessment

1 Department of Physical Geography, Utrecht University, The Netherlands (o.schmitz@uu.nl)

2 Flemish Institute for Technological Research (VITO), Belgium

Oliver Schmitz1 , Jean-Luc de Kok2, Kor de Jong1 and Derek Karssenberg1

Motivation and objective Example model

Conclusions

The function notation syntax for input requirements decouples the 
implementation of the state transition function and the interface 
specification, and therefore increases the generic design of 
component models. Model builders therefore can easier select 
and assess alternative model compositions.

The construction of self-contained modules with standardised 
interfaces leads to the development of more generic and 
reusable component models. However, required inputs can be 
obtained from different sources such as static data read from 
disk (e.g. by readmap("runoff")) or as output from other 
components generated at model runtime (e.g. by runoff.get()). 
Different sources require a different input request syntax within 
a state transition function and therefore a dependency between 
the implementation of the state transition function and the input 
interface is introduced.

We aim to provide a uniform specification of the input requests 
within a state transition function independent of the source type. 
We propose the function object notation as means to specify 
input requirements and apply this approach to an integrated 
modelling framework implemented in Python. The used request-
reply execution supports for Monte Carlo simulations.

Results can be visualised for each component, timestep and cell. 
The figure shows the catchment (A), the probability of cells being 
excluded from planting due to water scarcity in 2045 (B) and the 
probability of trees present in a cell in 2100 (C). Timeseries can 
be displayed interactively for each cell (D).

The Input class returns a function object that is assigned to the 
tot_runoff variable (line 6) at initialisation of the component model. 
While executing the dynamic section at runtime, the function call 
(line 18) initiates the execution of the invoked component until the 
current time step. 
The process implementation (the dynamic section) remains the same 
irrespective of input data obtained from disk or external components.

The following listing shows the implementation of the land use 
change component and its instantiation within the modelling 
framework. The component initiates every year an input request to 
the runoff accumulator. Each component can implement its own 
postmcloop with operations calculating ensemble statistics. 
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We apply the framework to build an integrated model with 
components modelling land use change, surface runoff and 
eucalyptus tree growth. The components use different time steps, 
discretisation differences can be bridged with the help of 
accumulators [3]. The numbers indicate the order of requests and 
replies:

The modelling framework contains template classes allowing for 
dynamic modelling and Monte Carlo simulations. The modeller can 
use map algebra operations provided by the PCRaster Python 
module [1, 2] to implement stochastic spatial processes.

A function notation of input requests implicitly defines the 
execution order of component models. Called components can 
execute several time steps until the time step matches the one of 
the requesting component. Monte Carlo simulations of integrated 
models are executed according to the following scheme:

Building blocks and modelling framework

Outputs

Eucalyptus growth
Temporal discretisation: 7 days

Land use
Temporal discretisation: 1 year

Accumulator
Surface runoff
Temporal discretisation: 1 day
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discharge

1

request
discharge

2
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tree height
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request
land use
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provide
land use
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provide
tree height
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provide
discharge

7

provide
discharge

8

Step 1:
for all c in C:
generate a set S with parameters and inputs suitable for component c

Step 2:
run_until(ci, tj):
if input i from ck required:
if not ck at tj:
run_until(ck, tj)

obtain input i
while ti < tj:
calculate state transition function

for s in S:
for each time step ti of c1:
run_until(c1, ti)

Step 3:
for all c in C
run postprocessing over all S and time steps of c

1class Landuse(DynamicModel, MonteCarloModel):
2 def __init__(self, start, end, delta, cloneMap):
3 DynamicModel.__init__(self, start, end, delta)
4 MonteCarloModel.__init__(self)
5 setclone(cloneMap)
6 self.tot_runoff = Input(TotalRunoff(start, end, timedelta(days=1), cloneMap))
7
8 def premcloop(self):
9 self.yearlyRunoffRequired = self.readmap("requiredRunoff")
10 self.mainStreams = self.readmap("streams")
11 self.ldd = lddcreate("dem.map", 1e31, 1e31, 1e31, 1e31)
12
13 def initial(self):
14 self.trees = spatial(boolean(0))
15 self.export(self.trees, "trees")
16
17 def dynamic(self):
18 total_runoff = self.tot_runoff(self.current_time_step())
19 runoffTooLow = self.mainStreams & (total_runoff.totRunoff < self.yearlyRunoffRequired)
20 noNewTrees = catchment(self.ldd, runoffTooLow)
21 suitabilityNeighbourhood = ifthenelse(window4total(scalar(self.trees)) > 0.5, scalar(1), 0)
22 suitabilityRandom = ifthen(pcrnot(self.trees), uniform(1))
23 suitability = ifthen(pcrnot(noNewTrees), (suitabilityNeighbourhood + suitabilityRandom) / 2.0)
24 suitSort = order(0.0 - suitability)
25 self.trees = pcror(self.trees, cover(suitSort < 11, 0))
26 self.export(self.trees, "trees")
27
28 def postmcloop(self):
29 mc_probability("trees", self.sampleNumbers(), self.timeSteps())
30
31model = Landuse(datetime(2010, 1, 1), datetime(2100, 1, 1), timedelta(days=365), "clone.map")
32dynModel = DynamicFramework(model)
33mcFrw = MonteCarloFramework(dynModel, nrRealisations=500).run()


