Earth-like aqueous debris-flow activity on Mars at high orbital obliquity in the last Ma

Debris flows occurred at Earth-like frequencies during high-obliquity periods in Istok crater in Aonia Terra. Millimeters to centimeters of liquid water averaged over the catchments were required for the formation of debris flows. We quantify debris-flow size, frequency and associated liquid water contents on Mars, in the very young Istok crater in Aonia Terra.

Introduction

Debris flows occurred at Earth-like frequencies during high-obliquity periods in Istok crater in Aonia Terra. Millimeters to centimeters of liquid water averaged over the catchments were required for the formation of debris flows. We quantify debris-flow size, frequency and associated liquid water contents on Mars, in the very young Istok crater in Aonia Terra.

Study site: Istok crater

Debris-flow volumes and return period

- Modal debris-flow volume is 605 m3.
- Debris-flow return periods roughly range between 1 to 200 yr in the entire crater and per catchment, depending on the chosen obliquity threshold somewhere between 30° - 35°.

Debris-flow size and maximum catchment

- Modal debris-flow volume is 605 m3.
- Debris-flow return periods roughly range between 1 to 200 yr in the entire crater and per catchment, depending on the chosen obliquity threshold somewhere between 30° - 35°.

Methods

- We aim to determine how much water melted during high-obliquity periods and how frequently this happened.
- We quantify debris-flow size, frequency and associated liquid water contents on Mars, in the very young Istok crater in Aonia Terra.

Results

- Modal debris-flow volume is 605 m3.
- Debris-flow return periods roughly range between 1 to 200 yr in the entire crater and per catchment, depending on the chosen obliquity threshold somewhere between 30° - 35°.

Discussion

- Millimeter- to centimeters of liquid water averaged over the catchments are required for the formation of the observed debris flows (Table 1).

Conclusions

- Debris flows occurred at Earth-like frequencies during high-obliquity periods in Istok crater during the last million years on Mars.
- Debris flows occurred at Earth-like frequencies during high-obliquity periods in Istok crater during the last million years on Mars.

Debris-flow size and maximum catchment

- Modal debris-flow volume is 605 m3.
- Debris-flow return periods roughly range between 1 to 200 yr in the entire crater and per catchment, depending on the chosen obliquity threshold somewhere between 30° - 35°.

Methods

- We aim to determine how much water melted during high-obliquity periods and how frequently this happened.
- We quantify debris-flow size, frequency and associated liquid water contents on Mars, in the very young Istok crater in Aonia Terra.