

I. INTRODUCTION & DATA

INTRODUCTION

Large Low Shear Velocity Provinces (LLSVP's) are consistently seen in lowermost mantle shear wave velocity models (see fig.1). Outstanding questions include:

- Are they dominantly thermal or thermochemical structures?
- What is their role in mantle dynamics?
- Are they long-lived? Could they be the hidden reservoirs of heat-producing elements in the Earth's mantle?

These questions can be answered by getting information on their density structure in addition to their velocity structure.

2891 km

Figure 1: Variations in Vs (dlnVs) for mantle model S20RTS at 2891 km depth.

We use our new Vs and Vp model SP12RTS (Koelemeijer et al, 2015) to perform a model space search for density variations in the lowermost mantle using a new data set of normal mode splitting function measurements, in particular new CMB Stoneley mode data. We find that the LLSVPs have a low density, instead of a high density as suggested in previous studies.

DATA

Normal modes

We use whole Earth oscillations, which are standing waves along the surface and radius of the Earth. There are two types of modes, toroidal modes $_{n}T_{l}$ and spheroidal modes $_{n}S_{l}$, which are characterized by their angular order I and radial order n. Here we will use spheroidal modes which are sensitive to Vs, Vp and density of the Earth's mantle. Our data set contains almost 7000 splitting function coefficients for about 140 normal modes (Deuss et al, 2013, Koelemeijer et al, 2013).

CMB Stoneley mode measurements

Stoneley modes are whole Earth oscillations which are confined to solid-liquid interfaces, such as the Core Mantle Boundary (CMB). They are very useful for studying the properties of the lowermost mantle, but are difficult to observe due to their very small excitation amplitude at the Earth's surface. We recently made the first observations of CMB Stoneley modes, providing us with the unique opportunity to study the CMB region without trade-off with upper mantle structure.

Figure 2: Normal mode spectrum for the boxing day 2004 Sumatra event. Red arrows point to strongly split inner core sensitive modes, which are disregarded in this study.

Figure 3: Sensitivity kernels for CMB Stoneley modes, showing their strong sensitivity to Vs, Vp and density near the CMB.

Earth's hot lowermost mantle revealed by Stoneley mode splitting observations Arwen Deuss (a.f.deuss@uu.nl), Paula Koelemeijer, Jeroen Ritsema

0.0 0.1 0.2 0.3 0.4 0.5

(Light)

R LL

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

(Dense)

R _{LL}

(Light)

Degree 2 probability

JGR, 1996), RR98 (Resovsky & Ritzwoller, JGR, 1998).

colored by the CMB topography scaling factor H.

III. INTERPRETATION

EARTH'S HOT LOWERMOST MANTLE

We hypothesize that the LLSVPs signify the hidden reservoirs of heat-producing elements, as suggested to be present in the deep mantle from analysis of Sm/Nd isotopes. The LLSVPs may contain ~43% of Earth's U, Th and K, and produce 3-25TW of radiogenic power, giving rise to the inferred low densities. While currently light or neutrally buoyant, the LLSVPs can retain their long-term stability if they have dense, compositionally distinct roots and are passively deformed by subducting slabs in the deep mantle while free to migrate along the CMB. Such rising LLSVPs will cool down and subsequently sink due to their intrinsic higher density, similar to the periodically rising and collapsing of thermochemical superplumes. The current rise of light LLSVPs also explains the excess-ellipticity of the core and uplift of the Earth's surface.

GEONEUTRINO'S?

The high abundance of heat-producing elements in two antipodal regions of the Earths mantle would give rise to a characteristic geoneutrino signal. These geoneutrino's are very difficult to detect, and require large detectors of which only two are currently operational in continental regions (one in Japan and one in Italy). Whether the LLSVPs indeed represent hidden reservoirs of U and Th in the deep mantle can be tested with forthcoming deployments of geoneutrino detectors in the oceans.

Figure 9: Global map of predicted geoneutrio flux from ²³⁸U+²³²Th decay in the mantle calculated from seismic tomography. Locations of geoneutrino detectors are plotted: Kamioka (KamLAND Japan), Gran Sasso (Borexino, Italy), Subury Canada (SNO+, operational soon) and Hawaii (Hanohano, proposed). From Sramek et al (2013).

KEY POINTS

•	Stone
	pertu
	mant
	densi
•	We h
	lower
	produ
•	Ensu
	the d

REFERENCES *Lett.*, **40**, p. 2557-2561, 2013.

DI11C-2611

eley modes, a unique class of free oscillations that are urbed primarily by velocity and density variations at the coretle boundary, are optimally fit when the LLSVPs have a lower sity than the surrounding material

hypothesize that these low-velocity, low-density structures in the r mantle are extremely hot due to the high concentration of heatlucing elements

ling geoneutrino research will test this hypothesis by mapping distribution of U and Th in the deep mantle.

ACKNOWLEDGEMENT This research is funded by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 204995. Funding was also provided by Arwen Deuss' Ammodo KNAW award for fundamental research and Philip Leverhulme prize.

Deuss, Ritsema & van Heijst, A new catalogue of normal-mode splitting function measurements up to 10 mHz, Geophys. J. Int., **193**, p. 920-937, 2013

Isshi, M. & K Tromp, Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth's mantle, *Science*, **285**, 1231, 1999.

Koelemeijer, P., A. Deuss & J. Ritsema, Observations of core-mantle boundary Stoneley modes, *Geophys. Res.*

Koelemeijer, P., J. Ritsema, A. Deuss & H.-J. van Heijst, SP12RTS: a degree-12 model of shear- and compressional-wave velocity for Earth's mantle, in press Geophys. J. Int, 2015.

Sramek, O., W, MacDonough, E. Kite, V. Lekic, S. Dye & S. Zhong, Geophysical and geochemical constraints on geoneutrino fluxes from Earth's mantle, Earth Plan. Sci. Lett., 361, p. 356-366, 2013.

Trampert, J., F. Deschamps, J. Resovsky & D. Yuen, Probabilistic tomography maps chemical heterogeneities throughout the lower mantle, Science, 306, 853, 2004.