

EGU2015-3397

Introduction

Debris-flow composition

- Debris-flow composition (i.e., rheology) is generally neglected in runout distance predictions.
- The effects of debris-flow composition on debris-flow depositional mechanisms is poorly understood.

Need for small-scale experiments

- The effects of debris-flow composition on runout and depositional mechanism have been largely neglected for practical reasons.
- Experiments enable detailed control of boundary conditions, such as debris-flow composition. However, unconfined experimental debris flows with self-formed levees and a marked lobe have only been formed in the large-scale USGS laboratory flume, and have not been formed in smaller-scale flumes to date.

Objectives

- We aim to:
 - Experimentally create unconfined small-scale debris flows that show similar flow behavior, grain segregation and deposit morphology as natural debris flows.
 - Evaluate the effects of debris-flow composition on runout distance and depositional mechanisms.

- We experimentally created 190 debris flows
- Flume (Fig. 1):
 - Channel: 30° inclination, 0.12 m wide, 2 m long
 - Outflow plain: 10[°] inclination, initial ~1 cm thick sand bed
- Hatch to divert debris-flow tail to prevent overflow of the initial deposit.

Fig. 1) Experimental setup. (a) Picture of the experimental setup. (b) Schematic overview of the experimental setup.

Data collection

Effects of debris-flow composition on runout and depositional mechanisms in laboratory experiments

<u>Tjalling de Haas^{1,P}, Lisanne Braat¹, Jasper R. F. W. Leuven¹, Ivar R. Lokhorst² & Maarten G. Kleinhans¹</u>

1) Utrecht Univeristy, Faculty of Geosciences, Department of Physical Geography. 2) Student Earth Sciences, Utrecht University. P) Presenting author, t.dehaas@uu.nl www.geog.uu.nl/fg/mkleinhans

Key experimental results

The small-scale experimental debris flows comprised multiple surges, coarse particles accumulated at the flow front, and

- Fig. 3) Morphology and sediment sorting of selected debris flows. F_a denotes gravel fraction, F_c denotes clay fraction.
- Clear optimum between runout distance and gravel fraction (Fig. 5). Low gravel fraction: levees insignificant, causing lateral spreading and small runout length. More gravel: increased collisional forces, enhanced levee formation, longer runout. Very
- Clear optimum between runout distance and clay fraction (Fig. 6). Clay fraction up to 0.2: clay suspension in pore-fluid, lubricating the flow and increasing runout. Larger clay fractions: viscous flows, very high yield strength, strongly decreased runout distance. Deposition induced by viscosity and yield strength in clay-rich flows.

the same conditions. The solid line connects the values averaged by gravel fraction class.

high gravel fractions: reduced runout by large resistive coarse-grained flow front. Deposition induced by frontal resistance.

the same conditions. The solid line connects the values averaged by clay fraction class.

- (Fig. 7).
- relatively small (Fig. 8).

Fig. 9) Debris-flow fan after 54 stacked debris flows.

- depositional lobe.
- Flow dynamics, deposit morphology and sediment sorting were similar to natural debris flows.
- Debris-flow composition has a profound effect on runout distance and depositional mechanism. Therefore, compositional effects should be incorporated in runout predictors.
- There is an optimum runout distance and area for gravel and clay fraction, whereas runout increases with water fraction (latter result not shown on this poster).
- Debris-flow deposition is primary governed by friction at the flow front in most debris flows, but in debris flows with a very high clay content high viscosity and yield strength govern deposition.

Acknowledgements: Support by the Physical Geography Laboratory at UU (Chris Roosendaal, Henk Markies and Marcel van Maarseveen) was essential for this reseach. Funding: TdH is supported by NWO grant ALW-GO-PL17-2012 to MGK.

Discussion

Sediment sorting and morphology of the experimental debris flows is similar to natural debris flows

Width-to-depth ratio of the experimental debris-flow channels is in the range of natural debris flows. Runout length (or travel distance) and runout area are in the range of natural debris flows, but are

Other experimental work:

Debris-flow fans: studying their autogenic dynamics (Fig. 9) (EGU2015-3370; board B477 on Friday). Debris-flow erosion: studying the erosive potential of debris-flows of various composition (Fig. 10).

> Fig. 10) Debris-flow erosion experiment. We use an initial bed layered with colored sand, in order to determine the erosive depth in the runout zone.

Conclusions

• We experimentally created unconfined small-scale debris flows with self-formed levees and a marked