MUSSEL HUMMOCKS AFFECT FLOW PATTERNS AND FOOD UPTAKE IN INTERTIDAL MUSSEL BEDS.

1. Problem definition

Shellfish reefs are able to stabilize sediment and attenuate wave forcing (Borsje et al., 2011; Donker et al., 2013). Opportunities for mussel bed restoration in the Dutch Wadden Sea are explored. For this purpose we need a better understanding of the processes that influence mussel bed stability. For coastal protection purposes the type of mussel bed will be important as some beds remain flat while others develop elevations.

Observations suggest that relief is largest in deeper lying, current dominated mussel beds. Relief develops when sedimentation occurs in irregularly covered mussel beds. High relief is expected to influence flow patterns and thereby transport of food. Variations in food availability can affect the long term stability of the mussel bed.

1. How does an elevated mussel patch (hummock) influence flow patterns, turbulence and vertical mixing?
2. How do hummocks influence food availability and uptake?

2. Methods

Field observations

- 4-week experiment around small hummock (~7x3m) (location see Fig 1.)
- Local flow & turbulence conditions
- ADV (32 Hz), 2 above mussel hummock 1 in channel

Model study

Flow patterns studied using SWASH (Zijlstra, et. al., 2011)
- Non-hydrostatic model
- Idealized mussel hummock
- Boundary conditions based on field observations
- Prescribed flow on left hand boundary
- 10 m sponge layer at right hand boundary to damp reflections
- Periodic boundary conditions north and south

Food uptake is studied using coupled model (based on Simpson et al., 2007)
- Advection-diffusion model with explicit food uptake (in 3D)

3. Field observations

What are typical flow velocities around a mussel hummock?

Observations of flow velocity (Fig 5) reveal:
- Low water: flow over hummock is larger
- High water: velocities are similar (hummock sensor is located closer to bed)
- Large increase in channel velocity when hummock emerges

How is vertical mixing influenced?
- Turbulent Kinetic Energy (TKE) is increased over hummock.
- Vertical mixing is increased

1a. Flow velocities and mixing are increased over hummock.

4. Model Results

How are flow patterns affected by hummocks?

For water level 0.6 m, flow from the left.
- Large velocity increase:
 - over hummock (+50%)
 - in channel (+25%)
- Wake behind hummock (-25%)
- Reduced velocities in front of hummock (-10%)
- Highest velocities on front and wake side of hummock

1b. Flow is partly accelerated over the hummock and partly routed around the hummock.

What are the effects of hummock geometry on these flow patterns?

- Reduced flow acceleration and increases routing
- Flow area decreases, all velocities increase
- Roughness height of 0.02 m on the sandy shoal

Increasing hummock length (Fig 7a)
- Gradual change from flow acceleration to flow routing
- Increasing hummock width (Fig 7b)
- Flow area decreases, all velocities increase
- Increasing surface roughness (Fig 7c)
- Reduces flow acceleration and increases routing

5. Conclusions

- Mussel hummocks influence flow by accelerating flow over the hummock and routing flow around the hummock.
- Geometry influences acceleration and routing, routing increases for more elongated and rougher hummocks.
- Wide hummocks are the most beneficial for high food uptake.

6. References & Acknowledgements

Technical support: Bas van Dam, Marcel van Maarseveen, Henk Markies, Chris Roosendaal and Reinier Schrijvershof

Jasper Donker, Maarten van der Vegt and Piet Hoekstra
Department of Physical Geography, Utrecht University

Fig 1: map of the Wadden Sea

Fig 2: The model bathymetry with mussel hummock used in the model study. Hummock, 6 x 4 m base, 0.4 m high, full domain 100 x 15 m.

Food uptake is studied using coupled model (based on Simpson et al., 2007)
- Advection-diffusion model with explicit food uptake (in 3D)

Fig 3: Observations of flow velocity on top of the hummock.

Fig 4: Observed TKE over the hummock and in the channel as a function of flow velocity.

Fig 5: Spatial distribution of averaged flow velocities for rising tide (0.6 m).

Fig 6: Effects of changes in hummock length (a.), width (b.) and surface roughness (c.) on the ratio between the input velocity at the upstream boundary and the velocity over the hummock in the channel respectively.

How do spatial patterns influence food uptake?

Change in food uptake with respect to hummock (Fig 7b).
Flat patch -3%
Elevated band +15% (over same area)
Checkerboard Hummocks First hummock +0% Second hummock +3.6%

General trend: More flow routing -> decreased food availability More flow acceleration -> increased food availability

Fig 7: Tested mussel bed types: (a.) a mussel patch with no elevation; (b.) a single hummock with a height of 0.4 m; (c.) a mussel band with a height of 0.4 m; (d.) two hummocks of 0.4 m height in a checkerboard formation.